kw / handler.py
3v324v23's picture
change path for imports
bf7f6a8
raw
history blame
9.83 kB
import base64
import json
import sys
from collections import defaultdict
from io import BytesIO
from pprint import pprint
from typing import Any, Dict, List
import torch
from diffusers import (
DiffusionPipeline,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
EulerAncestralDiscreteScheduler,
)
from safetensors.torch import load_file
from torch import autocast
# https://huggingface.co/philschmid/stable-diffusion-v1-4-endpoints
# https://huggingface.co/docs/inference-endpoints/guides/custom_handler
# set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if device.type != "cuda":
raise ValueError("need to run on GPU")
class EndpointHandler:
LORA_PATHS = {
"hairdetailer": "isatis/kw/lora/hairdetailer.safetensors",
"lora_leica": "isatis/kw/lora/lora_leica.safetensors",
"epiNoiseoffset_v2": "isatis/kw/lora/epiNoiseoffset_v2.safetensors",
"MBHU-TT2FRS": "isatis/kw/lora/MBHU-TT2FRS.safetensors",
"ShinyOiledSkin_v20": "isatis/kw/lora/ShinyOiledSkin_v20-LoRA.safetensors",
"polyhedron_new_skin_v1.1": "isatis/kw/lora/polyhedron_new_skin_v1.1.safetensors",
"detailed_eye-10": "isatis/kw/lora/detailed_eye-10.safetensors",
"add_detail": "isatis/kw/lora/add_detail.safetensors",
"MuscleGirl_v1": "isatis/kw/lora/MuscleGirl_v1.safetensors",
}
TEXTUAL_INVERSION = [
{
"weight_name": "https://huggingface.co/isatis/kw/embeddings/EasyNegative.safetensors",
"token": "easynegative",
},
{"weight_name": "isatis/kw/embeddings/badhandv4.pt", "token": "badhandv4"},
{
"weight_name": "isatis/kw/embeddings/bad-artist-anime.pt",
"token": "bad-artist-anime",
},
{"weight_name": "isatis/kw/embeddings/NegfeetV2.pt", "token": "NegfeetV2"},
{
"weight_name": "isatis/kw/embeddings/ng_deepnegative_v1_75t.pt",
"token": "ng_deepnegative_v1_75t",
},
{"weight_name": "isatis/kw/embeddings/bad-hands-5.pt", "token": "bad-hands-5"},
]
def __init__(self, path="."):
# load the optimized model
self.pipe = DiffusionPipeline.from_pretrained(
path,
custom_pipeline="lpw_stable_diffusion", # avoid 77 token limit
torch_dtype=torch.float16, # accelerate render
)
self.pipe = self.pipe.to(device)
# DPM++ 2M SDE Karras
# increase step to avoid high contrast num_inference_steps=30
self.pipe.scheduler = DPMSolverMultistepScheduler.from_config(
self.pipe.scheduler.config,
use_karras_sigmas=True,
algorithm_type="sde-dpmsolver++",
)
# Mode boulardus
self.pipe.safety_checker = None
# Load negative embeddings to avoid bad hands, etc
self.load_embeddings()
# Load default Lora models
self.pipe = self.load_selected_loras(
[
("polyhedron_new_skin_v1.1", 0.35), # nice Skin
("detailed_eye-10", 0.3), # nice eyes
("add_detail", 0.4), # detailed pictures
("MuscleGirl_v1", 0.3), # shape persons
],
)
# boosts performance by another 20%
self.pipe.enable_xformers_memory_efficient_attention()
self.pipe.enable_attention_slicing()
def load_lora(self, pipeline, lora_path, lora_weight=0.5):
state_dict = load_file(lora_path)
LORA_PREFIX_UNET = "lora_unet"
LORA_PREFIX_TEXT_ENCODER = "lora_te"
alpha = lora_weight
visited = []
for key in state_dict:
state_dict[key] = state_dict[key].to(device)
# directly update weight in diffusers model
for key in state_dict:
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
layer_infos = (
key.split(".")[0]
.split(LORA_PREFIX_TEXT_ENCODER + "_")[-1]
.split("_")
)
curr_layer = pipeline.text_encoder
else:
layer_infos = (
key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_")
)
curr_layer = pipeline.unet
# find the target layer
temp_name = layer_infos.pop(0)
while len(layer_infos) > -1:
try:
curr_layer = curr_layer.__getattr__(temp_name)
if len(layer_infos) > 0:
temp_name = layer_infos.pop(0)
elif len(layer_infos) == 0:
break
except Exception:
if len(temp_name) > 0:
temp_name += "_" + layer_infos.pop(0)
else:
temp_name = layer_infos.pop(0)
# org_forward(x) + lora_up(lora_down(x)) * multiplier
pair_keys = []
if "lora_down" in key:
pair_keys.append(key.replace("lora_down", "lora_up"))
pair_keys.append(key)
else:
pair_keys.append(key)
pair_keys.append(key.replace("lora_up", "lora_down"))
# update weight
if len(state_dict[pair_keys[0]].shape) == 4:
weight_up = (
state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
)
weight_down = (
state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
)
curr_layer.weight.data += alpha * torch.mm(
weight_up, weight_down
).unsqueeze(2).unsqueeze(3)
else:
weight_up = state_dict[pair_keys[0]].to(torch.float32)
weight_down = state_dict[pair_keys[1]].to(torch.float32)
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down)
# update visited list
for item in pair_keys:
visited.append(item)
return pipeline
def load_embeddings(self):
"""Load textual inversions, avoid bad prompts"""
for model in EndpointHandler.TEXTUAL_INVERSION:
self.pipe.load_textual_inversion(
".", weight_name=model["weight_name"], token=model["token"]
)
def load_selected_loras(self, selections):
"""Load Loras models, can lead to marvelous creations"""
for model_name, weight in selections:
lora_path = EndpointHandler.LORA_PATHS[model_name]
self.pipe = self.load_lora(
pipeline=self.pipe, lora_path=lora_path, lora_weight=weight
)
return self.pipe
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`dict`:. base64 encoded image
"""
global device
# Which Lora do we load ?
# selected_models = [
# ("ShinyOiledSkin_v20", 0.3),
# ("MBHU-TT2FRS", 0.5),
# ("hairdetailer", 0.5),
# ("lora_leica", 0.5),
# ("epiNoiseoffset_v2", 0.5),
# ]
# 1. Verify input arguments
required_fields = [
"prompt",
"negative_prompt",
"width",
"num_inference_steps",
"height",
"seed",
"guidance_scale",
]
missing_fields = [field for field in required_fields if field not in data]
if missing_fields:
return {
"flag": "error",
"message": f"Missing fields: {', '.join(missing_fields)}",
}
# Now extract the fields
prompt = data["prompt"]
negative_prompt = data["negative_prompt"]
loras_model = data.pop("loras_model", None)
seed = data["seed"]
width = data["width"]
num_inference_steps = data["num_inference_steps"]
height = data["height"]
guidance_scale = data["guidance_scale"]
# USe this to add automatically some negative prompts
forced_negative = (
negative_prompt
+ """easynegative, badhandv4, bad-artist-anime, NegfeetV2, ng_deepnegative_v1_75t, bad-hands-5 """
)
# Set the generator seed if provided
generator = torch.Generator(device="cuda").manual_seed(seed) if seed else None
# Load the provided Lora models
if loras_model:
self.pipe = self.load_selected_loras(loras_model)
try:
# 2. Process
with autocast(device.type):
image = self.pipe.text2img(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
height=height,
width=width,
negative_prompt=forced_negative,
generator=generator,
max_embeddings_multiples=5,
).images[0]
# encode image as base 64
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue())
# Return the success response
return {"flag": "success", "image": img_str.decode()}
except Exception as e:
# Handle any other exceptions and return an error response
return {"flag": "error", "message": str(e)}