File size: 57,106 Bytes
f4168f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
# modified from https://github.com/syncdoth/RetNet/blob/main/retnet/modeling_retnet.py

import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union

import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint

from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers import top_k_top_p_filtering
from transformers.activations import ACT2FN
from transformers.modeling_outputs import ModelOutput, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

from .configuration_retnet import RetNetConfig

logger = logging.get_logger(__name__)


# helper functions
def split_heads(tensors, bsz, seqlen, num_heads):
    assert isinstance(tensors, (tuple, list))
    return [x.view(bsz, seqlen, num_heads, -1).transpose(1, 2) for x in tensors]


def rotate_every_two(x):
    x1 = x[:, :, :, ::2]
    x2 = x[:, :, :, 1::2]
    x = torch.stack((-x2, x1), dim=-1)
    return x.flatten(-2)  # in einsum notation: rearrange(x, '... d j -> ... (d j)')\


def theta_shift(x, sin, cos):
    return (x * cos) + (rotate_every_two(x) * sin)


def get_activation_fn(activation):
    return ACT2FN[activation]


# Copied from https://github.com/huggingface/pytorch-image-models/blob/bbe798317fb26f063c18279827c038058e376479/timm/layers/drop.py#L137C1-L154C29
def drop_path(
    x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True
):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.

    """
    if drop_prob == 0.0 or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (
        x.ndim - 1
    )  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
    if keep_prob > 0.0 and scale_by_keep:
        random_tensor.div_(keep_prob)
    return x * random_tensor


class RMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6, elementwise_affine=True):
        super().__init__()
        self.normalized_shape = dim
        self.eps = eps
        self.elementwise_affine = elementwise_affine
        if self.elementwise_affine:
            self.weight = nn.Parameter(torch.ones(dim))
        else:
            self.register_parameter("weight", None)

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        output = self._norm(x.float()).type_as(x)
        if self.weight is not None:
            output = output * self.weight
        return output


try:
    from apex.normalization import FusedRMSNorm

    RMSNorm = FusedRMSNorm  # noqa

    logger.info(
        "Discovered apex.normalization.FusedRMSNorm - will use it instead of RMSNorm"
    )
except ImportError:
    # using the normal RMSNorm
    pass
except Exception:
    logger.warning("discovered apex but it failed to load, falling back to RMSNorm")
    pass


class RetNetRelPos(nn.Module):
    def __init__(self, config: RetNetConfig):
        super().__init__()
        self.config = config
        num_heads = config.decoder_retention_heads

        angle = 1.0 / (
            10000 ** torch.linspace(0, 1, config.decoder_embed_dim // num_heads // 2)
        )
        angle = angle.unsqueeze(-1).repeat(1, 2).flatten()
        # decay (gamma)
        if config.use_lm_decay:
            # NOTE: alternative way described in the paper
            s = torch.log(torch.tensor(1 / 32))
            e = torch.log(torch.tensor(1 / 512))
            decay = torch.log(1 - torch.exp(torch.linspace(s, e, num_heads)))  # [h,]
        else:
            decay = torch.log(
                1 - 2 ** (-5 - torch.arange(num_heads, dtype=torch.float))
            )
        self.register_buffer("angle", angle)
        self.register_buffer("decay", decay)
        self.recurrent_chunk_size = config.recurrent_chunk_size

    def forward(
        self,
        slen,
        forward_impl="parallel",
        recurrent_chunk_size=None,
        retention_mask=None,
        get_decay_scale=True,
    ):
        if forward_impl == "recurrent":
            sin = torch.sin(self.angle * (slen - 1))
            cos = torch.cos(self.angle * (slen - 1))
            retention_rel_pos = ((sin, cos), self.decay.view(1, -1, 1, 1).exp())
        elif forward_impl == "chunkwise":
            if recurrent_chunk_size is None:
                recurrent_chunk_size = self.recurrent_chunk_size
            index = torch.arange(slen).to(self.decay)
            sin = torch.sin(index[:, None] * self.angle[None, :])
            cos = torch.cos(index[:, None] * self.angle[None, :])

            block_index = torch.arange(recurrent_chunk_size).to(self.decay)
            mask = torch.tril(
                torch.ones(recurrent_chunk_size, recurrent_chunk_size)
            ).to(self.decay)
            mask = torch.masked_fill(
                block_index[:, None] - block_index[None, :], ~mask.bool(), float("inf")
            )
            mask = torch.exp(mask * self.decay[:, None, None])
            mask = torch.nan_to_num(mask)
            mask = mask.unsqueeze(0)  # [1, h, t, t]
            # TODO: need to handle retention_mask
            # scaling
            value_inner_decay = mask[:, :, -1] / mask[:, :, -1].sum(
                dim=-1, keepdim=True
            )
            value_inner_decay = value_inner_decay.unsqueeze(-1)
            scale = mask.sum(dim=-1, keepdim=True).sqrt()
            inner_mask = mask / scale

            cross_decay = torch.exp(self.decay * recurrent_chunk_size)
            query_inner_decay = torch.exp(self.decay[:, None] * (block_index + 1))
            cross_decay = cross_decay[None, :, None, None]
            query_inner_decay = query_inner_decay[None, :, :, None] / (
                scale / mask[:, :, -1].sum(dim=-1)[:, :, None, None]
            )
            # decay_scale (used for kv cache)
            if get_decay_scale:
                decay_scale = self.compute_decay_scale(slen, retention_mask)
            else:
                decay_scale = None
            retention_rel_pos = (
                (sin, cos),
                (
                    inner_mask,
                    cross_decay,
                    query_inner_decay,
                    value_inner_decay,
                    decay_scale,
                ),
            )
        else:  # parallel
            index = torch.arange(slen).to(self.decay)
            sin = torch.sin(index[:, None] * self.angle[None, :])
            cos = torch.cos(index[:, None] * self.angle[None, :])
            mask = torch.tril(torch.ones(slen, slen)).to(self.decay)
            mask = torch.masked_fill(
                index[:, None] - index[None, :], ~mask.bool(), float("inf")
            )
            mask = torch.exp(mask * self.decay[:, None, None])
            mask = torch.nan_to_num(mask)
            mask = mask.unsqueeze(0)  # [1, h, t, t]
            if retention_mask is not None:
                # this is required for left padding
                mask = mask * retention_mask.float().view(-1, 1, 1, slen).to(mask)

            # scaling
            mask = mask / mask.sum(dim=-1, keepdim=True).sqrt()
            mask = torch.nan_to_num(mask, nan=0.0)
            # decay_scale (used for kv cache)
            if get_decay_scale:
                decay_scale = self.compute_decay_scale(slen, retention_mask)
            else:
                decay_scale = None
            # mask processing for intra decay
            if retention_mask is not None:
                max_non_zero = (
                    torch.cumsum(retention_mask, dim=-1).max(dim=-1).indices
                )  # [b,]
                intra_decay = mask[range(mask.shape[0]), :, max_non_zero]
            else:
                intra_decay = mask[:, :, -1]

            retention_rel_pos = ((sin, cos), (mask, intra_decay, decay_scale))

        return retention_rel_pos

    def compute_decay_scale(self, slen, retention_mask=None):
        exponent = torch.arange(slen, device=self.decay.device).float()
        decay_scale = self.decay.exp().view(-1, 1) ** exponent.view(1, -1)  # [h, t]
        if retention_mask is not None:
            seqlen = retention_mask.sum(dim=-1)  # [b,]
            bsz = seqlen.size(0)
            decay_scale = decay_scale.unsqueeze(0).repeat(bsz, 1, 1)  # [b, h, t]
            for i, pos in enumerate(seqlen):
                # the formula for decay_scale is `sum(gamma^i) for i in [0, slen).`
                # Since the retention_mask is 0 for padding, we can set the decay_scale
                # to 0 for the padding positions.
                decay_scale[i, :, pos.item() :] = 0
        else:
            bsz = 1
        decay_scale = decay_scale.sum(-1).view(bsz, -1, 1, 1)  # [b, h, 1, 1]
        return decay_scale


class MultiScaleRetention(nn.Module):
    def __init__(
        self,
        config: RetNetConfig,
        gate_fn="swish",
        use_bias=False,
        tensor_parallel=False,
    ):
        super().__init__()
        self.config = config
        self.embed_dim = config.decoder_embed_dim
        self.value_dim = config.decoder_value_embed_dim
        self.num_heads = config.decoder_retention_heads
        self.head_dim = self.value_dim // self.num_heads
        self.key_dim = self.embed_dim // self.num_heads
        self.scaling = self.key_dim**-0.5

        self.gate_fn = get_activation_fn(activation=str(gate_fn))

        self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=use_bias)
        self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=use_bias)
        self.v_proj = nn.Linear(self.embed_dim, self.value_dim, bias=use_bias)
        self.g_proj = nn.Linear(self.embed_dim, self.value_dim, bias=use_bias)

        self.out_proj = nn.Linear(self.value_dim, self.embed_dim, bias=use_bias)

        self.group_norm = RMSNorm(
            self.head_dim, eps=config.layernorm_eps, elementwise_affine=False
        )
        self.reset_parameters()

        if tensor_parallel:
            self.decay_proj = nn.Linear(self.num_heads, self.num_heads, bias=False)
        else:
            self.decay_proj = None

    def reset_parameters(self):
        nn.init.xavier_uniform_(self.q_proj.weight, gain=2**-2.5)
        nn.init.xavier_uniform_(self.k_proj.weight, gain=2**-2.5)
        nn.init.xavier_uniform_(self.v_proj.weight, gain=2**-2.5)
        nn.init.xavier_uniform_(self.g_proj.weight, gain=2**-2.5)
        nn.init.xavier_uniform_(self.out_proj.weight)

    def parallel_retention(self, q, k, v, decay_mask):
        """
        q,  # bsz * num_head * len * qk_dim
        k,  # bsz * num_head * len * qk_dim
        v,  # bsz * num_head * len * v_dim
        decay_mask,  # (1 or bsz) * num_head * len * len
        """
        decay_mask, intra_decay, scale = decay_mask
        # just return retention_rel_pos projected
        # TODO: for shardformer
        if self.decay_proj is not None:
            decay_mask = self.decay_proj(decay_mask.transpose(-1, -3)).transpose(-3, -1)

        # [b, h, t, t]
        retention = q @ k.transpose(-1, -2)  # (scaled dot-product)
        retention = retention * decay_mask

        # invariant after normalization
        retention = retention / retention.detach().sum(
            dim=-1, keepdim=True
        ).abs().clamp(min=1)

        output = retention.type_as(v) @ v  # [b, h, t, v_dim / h]
        output = output.transpose(1, 2)  # [b, t, h, v_dim / h]

        if self.training:  # skip cache
            return output, None, retention

        if self.decay_proj is not None:
            intra_decay = self.decay_proj(intra_decay.transpose(-1, -2)).transpose(
                -2, -1
            )

        # kv cache: [b, h, t, v_dim, qk_dim]
        current_kv = k.unsqueeze(-2) * v.unsqueeze(-1)
        intra_decay = intra_decay[:, :, :, None, None]  # [b, h, t, 1, 1]
        current_kv = (current_kv * intra_decay).sum(2)  # [b, h, v_dim, qk_dim]

        cache = {"prev_key_value": current_kv, "scale": scale}
        return output, cache, retention

    def recurrent_retention(
        self, q, k, v, decay, past_key_value=None, retention_mask=None
    ):
        """
        q, k, v, # bsz * num_head * 1 * qkv_dim
        past_key_value:
            - "prev_key_value"  # bsz * num_head * v_dim * qk_dim
            - "scale"  # (1 or bsz) * num_head * 1 * 1
        decay # (1 or bsz) * num_head * 1 * 1
        retention_mask # bsz * 1
        """
        if retention_mask is not None:
            retention_mask = retention_mask.float().view(-1, 1, 1, 1).to(decay)
        else:
            retention_mask = torch.ones(k.size(0), 1, 1, 1).to(decay)
        # (b, h, v_dim, qk_dim)
        current_kv = k * v.transpose(-1, -2) * retention_mask

        if past_key_value is not None and "prev_key_value" in past_key_value:
            prev_kv = past_key_value["prev_key_value"]
            prev_scale = past_key_value["scale"]
            scale = torch.where(retention_mask == 0, prev_scale, prev_scale * decay + 1)
            # connect prev_kv and current_kv
            # how much to decay prev_kv
            decay_amount = prev_scale.sqrt() * decay / scale.sqrt()
            decay_amount = torch.where(retention_mask == 0, 1, decay_amount)
            prev_kv = prev_kv * decay_amount  # decay prev_kv
            current_kv = current_kv / scale.sqrt()  # scale current_kv
            current_kv = torch.nan_to_num(
                current_kv, nan=0.0
            )  # remove nan, scale might be 0

            current_kv = prev_kv + current_kv
        else:
            scale = torch.ones_like(decay)
            # when retention_mask is 0 at the beginning, setting scale to 1 will
            # make the first retention to use the padding incorrectly. Hence,
            # setting it to 0 here. This is a little ugly, so we might want to
            # change this later. TODO: improve
            scale = torch.where(retention_mask == 0, torch.zeros_like(decay), scale)

        output = torch.sum(q * current_kv, dim=3).unsqueeze(1)  # (b, 1, h, d_v)

        cache = {"prev_key_value": current_kv, "scale": scale}
        return output, cache

    def chunkwise_retention(self, q, k, v, decay_mask):
        """
        q, k, v,  # bsz * num_head * seqlen * qkv_dim
        past_key_value:
            - "prev_key_value"  # bsz * num_head * v_dim * qk_dim
            - "scale"  # (1 or bsz) * num_head * 1 * 1
        decay_mask,  # 1 * num_head * chunk_size * chunk_size
        cross_decay,  # 1 * num_head * 1 * 1
        inner_decay,  # 1 * num_head * chunk_size * 1
        """
        # TODO: not working properly
        (
            decay_mask,
            cross_decay,
            query_inner_decay,
            value_inner_decay,
            decay_scale,
        ) = decay_mask
        bsz, _, tgt_len, _ = v.size()
        chunk_len = decay_mask.size(-1)
        assert tgt_len % chunk_len == 0
        num_chunks = tgt_len // chunk_len

        # [b, n_c, h, t_c, qkv_dim]
        q = q.view(bsz, self.num_heads, num_chunks, chunk_len, self.key_dim).transpose(
            1, 2
        )
        k = k.view(bsz, self.num_heads, num_chunks, chunk_len, self.key_dim).transpose(
            1, 2
        )
        v = v.view(bsz, self.num_heads, num_chunks, chunk_len, self.head_dim).transpose(
            1, 2
        )

        k_t = k.transpose(-1, -2)

        qk_mat = q @ k_t  # [b, n_c, h, t_c, t_c]
        qk_mat = qk_mat * decay_mask.unsqueeze(1)
        inner_scale = qk_mat.detach().abs().sum(dim=-1, keepdim=True).clamp(min=1)
        qk_mat = qk_mat / inner_scale
        # [b, n_c, h, t_c, v_dim]
        inner_output = torch.matmul(qk_mat, v)

        # reduce kv in one chunk
        # [b, n_c, h, qk_dim, v_dim]
        kv = k_t @ (v * value_inner_decay)
        # kv = kv.view(bsz, num_chunks, self.num_heads, self.key_dim, self.head_dim)

        kv_recurrent = []
        cross_scale = []
        kv_state = torch.zeros(bsz, self.num_heads, self.key_dim, self.head_dim).to(v)
        kv_scale = torch.ones(bsz, self.num_heads, 1, 1).to(v)

        # accumulate kv by loop
        for i in range(num_chunks):
            kv_recurrent.append(kv_state / kv_scale)
            cross_scale.append(kv_scale)
            kv_state = kv_state * cross_decay + kv[:, i]
            kv_scale = (
                kv_state.detach()
                .abs()
                .sum(dim=-2, keepdim=True)
                .max(dim=-1, keepdim=True)
                .values.clamp(min=1)
            )

        kv_recurrent = torch.stack(kv_recurrent, dim=1)
        cross_scale = torch.stack(cross_scale, dim=1)

        all_scale = torch.maximum(inner_scale, cross_scale)
        align_inner_scale = all_scale / inner_scale
        align_cross_scale = all_scale / cross_scale

        cross_output = (q * query_inner_decay.unsqueeze(1)) @ kv_recurrent
        output = inner_output / align_inner_scale + cross_output / align_cross_scale
        output = output.transpose(2, 3)  # [b, n_c, t_c, h, v_dim]

        cache = {"prev_key_value": kv_state.transpose(-2, -1), "scale": decay_scale}
        return output, cache

    def forward(
        self,
        hidden_states: torch.Tensor,
        rel_pos: Tuple[Tuple[torch.Tensor]],
        retention_mask: Optional[torch.Tensor] = None,
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        forward_impl: str = "parallel",
        output_retentions: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor]]:
        B, T, H = hidden_states.size()
        (sin, cos), decay_mask = rel_pos
        # projections
        q = self.q_proj(hidden_states)
        k = self.k_proj(hidden_states)
        v = self.v_proj(hidden_states)
        g = self.g_proj(hidden_states)
        # multi-head
        q, k, v = split_heads((q, k, v), B, T, self.num_heads)
        k *= self.scaling  # for scaled dot product
        # rotate
        # NOTE: theta_shift has bug with mps device.
        qr = theta_shift(q, sin, cos)
        kr = theta_shift(k, sin, cos)

        # retention
        if forward_impl == "parallel":
            retention_out, curr_kv, retention_weights = self.parallel_retention(
                qr, kr, v, decay_mask
            )
        elif forward_impl == "recurrent":
            retention_out, curr_kv = self.recurrent_retention(
                qr,
                kr,
                v,
                decay_mask,
                past_key_value=past_key_value,
                retention_mask=retention_mask,
            )
        elif forward_impl == "chunkwise":
            retention_out, curr_kv = self.chunkwise_retention(qr, kr, v, decay_mask)
        else:
            raise ValueError(f"forward_impl {forward_impl} not supported.")

        # concaat heads
        normed = self.group_norm(retention_out).reshape(B, T, self.value_dim)
        # out gate & proj
        out = self.gate_fn(g) * normed
        out = self.out_proj(out.type_as(hidden_states))

        outputs = (out, curr_kv)
        if output_retentions:
            outputs += (retention_weights,) if forward_impl == "parallel" else (None,)
        return outputs


class FeedForwardNetwork(nn.Module):
    def __init__(
        self,
        embed_dim,
        ffn_dim,
        activation_fn,
        dropout,
        activation_dropout,
        layernorm_eps,
        subln=False,
        use_rms_norm=False,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.activation_fn = get_activation_fn(activation=str(activation_fn))
        self.activation_dropout_module = torch.nn.Dropout(activation_dropout)
        self.dropout_module = torch.nn.Dropout(dropout)
        self.fc1 = nn.Linear(self.embed_dim, ffn_dim)
        self.fc2 = nn.Linear(ffn_dim, self.embed_dim)
        if subln:
            if use_rms_norm:
                self.ffn_layernorm = RMSNorm(ffn_dim, eps=layernorm_eps)
            else:
                self.ffn_layernorm = LayerNorm(ffn_dim, eps=layernorm_eps)
        else:
            self.ffn_layernorm = None

    def reset_parameters(self):
        self.fc1.reset_parameters()
        self.fc2.reset_parameters()
        if self.ffn_layernorm is not None:
            self.ffn_layernorm.reset_parameters()

    def forward(self, x):
        x_shape = x.shape
        x = x.reshape(-1, x.size(-1))
        x = self.fc1(x)
        x = self.activation_fn(x.float()).type_as(x)
        x = self.activation_dropout_module(x)
        if self.ffn_layernorm is not None:
            x = self.ffn_layernorm(x)
        x = self.fc2(x)
        x = x.view(x_shape)
        x = self.dropout_module(x)
        return x


class GLU(nn.Module):
    def __init__(
        self,
        embed_dim,
        ffn_dim,
        activation_fn,
        dropout,
        activation_dropout,
    ):
        super().__init__()
        self.embed_dim = embed_dim
        self.activation_fn = get_activation_fn(activation=str(activation_fn))
        self.activation_dropout_module = torch.nn.Dropout(activation_dropout)
        self.dropout_module = torch.nn.Dropout(dropout)
        self.fc1 = nn.Linear(self.embed_dim, ffn_dim, bias=False)
        self.fc2 = nn.Linear(ffn_dim, self.embed_dim, bias=False)
        self.gate = nn.Linear(self.embed_dim, ffn_dim, bias=False)

    def reset_parameters(self):
        self.fc1.reset_parameters()
        self.fc2.reset_parameters()
        self.gate.reset_parameters()

    def forward(self, x):
        x_shape = x.shape
        x = x.reshape(-1, x.size(-1))
        g = self.gate(x)
        x = self.fc1(x)
        x = self.activation_fn(x.float()).type_as(x) * g
        x = self.activation_dropout_module(x)
        x = self.fc2(x)
        x = x.view(x_shape)
        x = self.dropout_module(x)
        return x


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks)."""

    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)

    def extra_repr(self):
        return "p={}".format(self.drop_prob)


class RetNetDecoderLayer(nn.Module):
    def __init__(self, config: RetNetConfig, depth: int, tensor_parallel: bool = False):
        super().__init__()
        self.config = config
        self.embed_dim = config.decoder_embed_dim
        self.dropout_module = torch.nn.Dropout(config.dropout)

        if config.drop_path_rate > 0:
            drop_path_prob = np.linspace(
                0, config.drop_path_rate, config.decoder_layers
            )[depth]
            self.drop_path = DropPath(drop_path_prob)
        else:
            self.drop_path = None

        self.retention = MultiScaleRetention(
            config, use_bias=False, tensor_parallel=tensor_parallel
        )

        self.normalize_before = config.decoder_normalize_before

        self.retention_layer_norm = RMSNorm(self.embed_dim, eps=config.layernorm_eps)

        self.ffn_dim = config.decoder_ffn_embed_dim

        self.ffn = self.build_ffn()

        self.final_layer_norm = RMSNorm(self.embed_dim, eps=config.layernorm_eps)

        if config.deepnorm:
            self.alpha = math.pow(2.0 * config.decoder_layers, 0.25)
        else:
            self.alpha = 1.0

    def build_ffn(self):
        if self.config.use_glu:
            return GLU(
                self.embed_dim,
                self.ffn_dim,
                self.config.activation_fn,
                self.config.dropout,
                self.config.activation_dropout,
            )
        else:
            return FeedForwardNetwork(
                self.embed_dim,
                self.ffn_dim,
                self.config.activation_fn,
                self.config.dropout,
                self.config.activation_dropout,
                self.config.layernorm_eps,
                self.config.subln,
                self.config.use_ffn_rms_norm,
            )

    def residual_connection(self, x, residual):
        return residual * self.alpha + x

    def forward(
        self,
        hidden_states: torch.Tensor,
        retention_rel_pos: Tuple[Tuple[torch.Tensor]],
        retention_mask: Optional[torch.Tensor] = None,
        forward_impl: str = "parallel",
        past_key_value: Optional[Tuple[torch.Tensor]] = None,
        output_retentions: Optional[bool] = False,
    ) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor]]:
        residual = hidden_states
        if self.normalize_before:
            hidden_states = self.retention_layer_norm(hidden_states)

        msr_outs = self.retention(
            hidden_states,
            retention_rel_pos,
            retention_mask=retention_mask,
            past_key_value=past_key_value,
            forward_impl=forward_impl,
            output_retentions=output_retentions,
        )
        hidden_states = msr_outs[0]
        curr_kv = msr_outs[1]

        hidden_states = self.dropout_module(hidden_states)

        if self.drop_path is not None:
            hidden_states = self.drop_path(hidden_states)

        hidden_states = self.residual_connection(hidden_states, residual)
        if not self.normalize_before:
            hidden_states = self.retention_layer_norm(hidden_states)

        residual = hidden_states
        if self.normalize_before:
            hidden_states = self.final_layer_norm(hidden_states)

        hidden_states = self.ffn(hidden_states)

        if self.drop_path is not None:
            hidden_states = self.drop_path(hidden_states)

        hidden_states = self.residual_connection(hidden_states, residual)
        if not self.normalize_before:
            hidden_states = self.final_layer_norm(hidden_states)

        outputs = (hidden_states, curr_kv)

        if output_retentions:
            outputs += (msr_outs[2],)
        return outputs


class RetNetPreTrainedModel(PreTrainedModel):
    # copied from LlamaPretrainedModel
    config_class = RetNetConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["RetNetDecoderLayer"]
    _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]

    def _init_weights(self, module):
        """
        Following original retnet, weights are already initialized in their own
        ways within their own init.
        """
        pass
        # below is copied from LlamaPretrainedModel
        # std = self.config.initializer_range
        # if isinstance(module, nn.Linear):
        #     module.weight.data.normal_(mean=0.0, std=std)
        #     if module.bias is not None:
        #         module.bias.data.zero_()
        # elif isinstance(module, nn.Embedding):
        #     module.weight.data.normal_(mean=0.0, std=std)
        #     if module.padding_idx is not None:
        #         module.weight.data[module.padding_idx].zero_()


@dataclass
class RetNetOutputWithPast(ModelOutput):
    """
    class for RetNet model's outputs that may also contain a past key/values (to speed up sequential decoding).

    config:
        last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, decoder_embed_dim)`):
            Sequence of hidden-states at the output of the last layer of the model.

            If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
            decoder_embed_dim)` is output.
        past_key_values (`List(Dict(str, torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            - "prev_key_value": shape=(bsz * num_head * v_dim * qk_dim)
            - "scale": shape=((1 or bsz) * num_head * 1 * 1)

            Contains pre-computed hidden-states (key and values in the multi-scale retention blocks)
            that can be used (see `past_key_values` input) to speed up sequential decoding.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, decoder_embed_dim)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        retentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_retentions=True` is passed or when `config.output_retentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Retentions weights, used for visualization.

        attentions (`tuple(torch.FloatTensor)`, *optional*, for backward compatibility. Same as retentions.
    """

    last_hidden_state: torch.FloatTensor = None
    past_key_values: Optional[List[Dict[str, torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    retentions: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


class RetNetModel(RetNetPreTrainedModel):
    def __init__(
        self,
        config: RetNetConfig,
        embed_tokens: nn.Embedding = None,
        tensor_parallel: bool = False,
    ):
        super().__init__(config)
        self.config = config

        self.dropout_module = torch.nn.Dropout(config.dropout)

        self.embed_dim = config.decoder_embed_dim
        self.embed_scale = (
            1.0 if config.no_scale_embedding else math.sqrt(self.embed_dim)
        )

        if embed_tokens is None:
            embed_tokens = nn.Embedding(
                config.vocab_size, config.decoder_embed_dim, config.pad_token_id
            )
        self.embed_tokens = embed_tokens

        if config.layernorm_embedding:
            self.layernorm_embedding = RMSNorm(self.embed_dim, eps=config.layernorm_eps)
        else:
            self.layernorm_embedding = None

        self.layers = nn.ModuleList([])

        for i in range(config.decoder_layers):
            self.layers.append(
                RetNetDecoderLayer(config, depth=i, tensor_parallel=tensor_parallel)
            )

        self.decoder_layers = len(self.layers)

        if config.decoder_normalize_before:
            self.layer_norm = RMSNorm(self.embed_dim, eps=config.layernorm_eps)
        else:
            self.layer_norm = None

        self.retnet_rel_pos = RetNetRelPos(config)
        self.recurrent_chunk_size = config.recurrent_chunk_size

        if config.deepnorm:
            init_scale = math.pow(8.0 * config.decoder_layers, 0.25)
            for name, p in self.named_parameters():
                if (
                    "fc1" in name
                    or "fc2" in name
                    or "out_proj" in name
                    or "v_proj" in name
                ):
                    p.data.div_(init_scale)

        if config.subln and not config.use_glu:
            init_scale = math.sqrt(math.log(config.decoder_layers * 2))
            for name, p in self.named_parameters():
                if (
                    "fc1" in name
                    or "fc2" in name
                    or "out_proj" in name
                    or "v_proj" in name
                ):
                    p.data.mul_(init_scale)

        self.gradient_checkpointing = False
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    def forward_embedding(
        self,
        input_ids,
        forward_impl,
        inputs_embeds=None,
        past_key_values=None,
    ):
        # Check if input_ids are within the range
        if input_ids.max() >= self.config.vocab_size:
            raise ValueError("All input_ids must be less than vocab_size")
            
        # if past_key_values is not None:
        if forward_impl == "recurrent":
            input_ids = input_ids[:, -1:]

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        embed = self.embed_scale * inputs_embeds

        if self.layernorm_embedding is not None:
            embed = self.layernorm_embedding(embed)

        embed = self.dropout_module(embed)

        return embed

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        retention_mask: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[Dict[str, torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        output_retentions: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        use_cache: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        forward_impl: Optional[str] = "parallel",
        recurrent_chunk_size: Optional[int] = None,
        retention_rel_pos: Optional[Tuple[torch.Tensor]] = None,
    ) -> Union[Tuple, RetNetOutputWithPast]:
        if output_retentions is None and output_attentions is not None:
            output_retentions = output_attentions
        output_retentions = (
            output_retentions
            if output_retentions is not None
            else self.config.output_retentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both input_ids and inputs_embeds at the same time"
            )
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        # embed tokens
        if inputs_embeds is None:
            inputs_embeds = self.forward_embedding(
                input_ids, forward_impl, inputs_embeds, past_key_values
            )

        if retention_mask is None and attention_mask is not None:
            retention_mask = attention_mask
        if retention_mask is not None and forward_impl == "recurrent":
            retention_mask = retention_mask[:, -1:]

        hidden_states = inputs_embeds

        # handling chunking here
        if recurrent_chunk_size is None:
            recurrent_chunk_size = self.recurrent_chunk_size
        need_pad_for_chunkwise = (
            forward_impl == "chunkwise" and seq_length % recurrent_chunk_size != 0
        )
        if need_pad_for_chunkwise:
            padding_len = recurrent_chunk_size - seq_length % recurrent_chunk_size
            slen = seq_length + padding_len
            hidden_states = F.pad(hidden_states, (0, 0, 0, padding_len))
        else:
            slen = seq_length
        # relative position
        if retention_rel_pos is None:
            retention_rel_pos = self.retnet_rel_pos(
                slen,
                forward_impl=forward_impl,
                recurrent_chunk_size=recurrent_chunk_size,
                retention_mask=retention_mask,
                get_decay_scale=not self.training,
            )

        # start running through the decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_retentions = () if output_retentions else None
        # layers * [bsz, num_head, qk_dim, decoder_embed_dim]
        next_decoder_cache = () if use_cache else None

        for idx, layer in enumerate(self.layers):
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            past_key_value = (
                past_key_values[idx] if past_key_values is not None else None
            )

            if self.gradient_checkpointing and self.training:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, output_retentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer),
                    hidden_states,
                    retention_rel_pos,
                    retention_mask,
                    forward_impl,
                    past_key_value,
                )
            else:
                layer_outputs = layer(
                    hidden_states,
                    retention_rel_pos,
                    retention_mask=retention_mask,
                    forward_impl=forward_impl,
                    past_key_value=past_key_value,
                    output_retentions=output_retentions,
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_decoder_cache += (layer_outputs[1],)

            if output_retentions:
                all_retentions += (layer_outputs[2],)

        next_cache = next_decoder_cache if use_cache else None

        if need_pad_for_chunkwise:
            hidden_states = hidden_states[:, :seq_length, :]

        if self.layer_norm is not None:
            hidden_states = self.layer_norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, next_cache, all_hidden_states, all_retentions]
                if v is not None
            )
        return RetNetOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            retentions=all_retentions,
            attentions=all_retentions,
        )


@dataclass
class RetNetCausalLMOutputWithPast(ModelOutput):
    """
    class for RetNet causal language model (or autoregressive) outputs.

    config:
        loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
            Language modeling loss (for next-token prediction).
        logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        past_key_values (`List(Dict(str, torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
            - "prev_key_value": shape=(bsz * num_head * v_dim * qk_dim)
            - "scale": shape=((1 or bsz) * num_head * 1 * 1)

            Contains pre-computed hidden-states (key and values in the multi-scale retention blocks)
            that can be used (see `past_key_values` input) to speed up sequential decoding.
        hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
            Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
            one for the output of each layer) of shape `(batch_size, sequence_length, decoder_embed_dim)`.

            Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
        retentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_retentions=True` is passed or when `config.output_retentions=True`):
            Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
            sequence_length)`.

            Retentions weights, used for visualization.

        attentions (`tuple(torch.FloatTensor)`, *optional*, for backward compatibility. Same as retentions.
    """

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[List[Dict[str, torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor]] = None
    retentions: Optional[Tuple[torch.FloatTensor]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None


class RetNetForCausalLM(RetNetPreTrainedModel):
    def __init__(
        self,
        config: RetNetConfig,
        embed_tokens: nn.Embedding = None,
        tensor_parallel: bool = False,
    ) -> None:
        super().__init__(config)
        self.model = RetNetModel(
            config, embed_tokens=embed_tokens, tensor_parallel=tensor_parallel
        )
        self.lm_head = nn.Linear(
            config.decoder_embed_dim, config.vocab_size, bias=False
        )
        # init here
        torch.nn.init.normal_(
            self.lm_head.weight, mean=0, std=config.decoder_embed_dim**-0.5
        )

        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        retention_mask: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_retentions: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        forward_impl: Optional[str] = None,
        recurrent_chunk_size: Optional[int] = None,
        retention_rel_pos: Optional[Tuple[torch.Tensor]] = None,
    ) -> Union[Tuple, RetNetCausalLMOutputWithPast]:
        if output_retentions is None and output_attentions is not None:
            output_retentions = output_attentions
        output_retentions = (
            output_retentions
            if output_retentions is not None
            else self.config.output_retentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        forward_impl = (
            forward_impl if forward_impl is not None else self.config.forward_impl
        )
        recurrent_chunk_size = (
            recurrent_chunk_size
            if recurrent_chunk_size is not None
            else self.config.recurrent_chunk_size
        )

        if retention_mask is None and attention_mask is not None:
            retention_mask = attention_mask

        outputs = self.model(
            input_ids,
            retention_mask=retention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            output_retentions=output_retentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            forward_impl=forward_impl,
            use_cache=use_cache,
            recurrent_chunk_size=recurrent_chunk_size,
            retention_rel_pos=retention_rel_pos,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

            if self.config.z_loss_coeff > 0:
                # z_loss from PaLM paper
                # z_loss = 1e-4 * log(log(z)), where z = sum(exp(logits))
                z_loss = torch.logsumexp(shift_logits, dim=-1).log().mean()
                loss += self.config.z_loss_coeff * z_loss

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return RetNetCausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            retentions=outputs.retentions,
            attentions=outputs.retentions,
        )

    def _crop_past_key_values(model, past_key_values, maximum_length):
        """Since retnet's kv do not have length, no need to crop. Just return"""
        return past_key_values

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        **kwargs,
    ):
        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        forward_impl = kwargs.get("forward_impl", "parallel")
        if past_key_values is not None:
            forward_impl = "recurrent"

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "forward_impl": forward_impl,
            }
        )
        return model_inputs

    @staticmethod
    def _reorder_cache(past_key_values, beam_idx):
        reordered_past = ()
        for layer_past in past_key_values:  # dict
            layer_past_kv = layer_past["prev_key_value"]  # [b, h, v_dim / h, qk_dim]
            layer_past_scale = layer_past["scale"]  # [b, h, 1, 1]
            if layer_past_scale.size(0) > 1:
                # this means that retention_mask is not None, so the scale for
                # each batch is different. We need to select the correct scale then.
                # NOTE: during huggingface generate, it will generate attention_mask
                # if it is None, so this linke will always be true. Still, having
                # this line here for safety.
                layer_past_scale = layer_past_scale.index_select(0, beam_idx)
            reordered_past += (
                {
                    "prev_key_value": layer_past_kv.index_select(0, beam_idx),
                    "scale": layer_past_scale,
                },
            )
        return reordered_past

    def sample_token(self, logit, do_sample=False, top_k=1, top_p=1.0, temperature=1.0):
        if not do_sample:
            return torch.argmax(logit, dim=-1, keepdim=True)
        filtered = top_k_top_p_filtering(logit / temperature, top_k=top_k, top_p=top_p)
        return torch.multinomial(torch.softmax(filtered, dim=-1), num_samples=1)

    @torch.inference_mode()
    def custom_generate(
        self,
        input_ids: torch.LongTensor = None,
        retention_mask: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        parallel_compute_prompt=True,
        max_new_tokens=20,
        bos_token_id=0,
        eos_token_id=0,
        do_sample=False,
        top_k=0,
        top_p=1.0,
        temperature=1.0,
        early_stopping=True,
    ):
        if retention_mask is None and attention_mask is not None:
            retention_mask = attention_mask

        if input_ids is not None:
            if input_ids.shape[1] == 1:
                past_key_values = None
            elif parallel_compute_prompt:
                ret_mask = (
                    retention_mask[:, :-1] if retention_mask is not None else None
                )
                outputs = self(
                    input_ids[:, :-1],
                    retention_mask=ret_mask,
                    forward_impl="parallel",
                    return_dict=True,
                    use_cache=True,
                )
                past_key_values = outputs.past_key_values
            else:
                past_key_values = None
                for p_i in range(input_ids.shape[1] - 1):
                    ret_mask = (
                        retention_mask[:, : p_i + 1]
                        if retention_mask is not None
                        else None
                    )
                    outputs = self(
                        input_ids[:, : p_i + 1],
                        retention_mask=ret_mask,
                        forward_impl="recurrent",
                        past_key_values=past_key_values,
                        return_dict=True,
                        use_cache=True,
                    )
                    past_key_values = outputs.past_key_values

            generated = input_ids
        else:
            generated = torch.tensor([[bos_token_id]]).to(self.lm_head.weight.device)
            past_key_values = None

        for i in range(max_new_tokens):
            outputs = self(
                generated,
                retention_mask=retention_mask,
                forward_impl="recurrent",
                past_key_values=past_key_values,
                use_cache=True,
                return_dict=True,
            )
            logit = outputs.logits[:, -1, :]  # [batch_size, vocab_size]
            past_key_values = outputs.past_key_values
            token = self.sample_token(
                logit,
                do_sample=do_sample,
                top_k=top_k,
                top_p=top_p,
                temperature=temperature,
            )
            generated = torch.cat([generated, token], dim=-1)
            if retention_mask is not None:
                retention_mask = torch.cat(
                    [retention_mask, torch.ones_like(token)], dim=-1
                )
            if early_stopping and (token == eos_token_id).all():
                break
        return generated


class RetNetForSequenceClassification(RetNetPreTrainedModel):
    def __init__(self, config, tensor_parallel=False):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.model = RetNetModel(config, tensor_parallel=tensor_parallel)
        self.score = nn.Linear(config.decoder_embed_dim, self.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        retention_mask: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_retentions: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        forward_impl: Optional[str] = None,
        recurrent_chunk_size: Optional[int] = None,
        retention_rel_pos: Optional[Tuple[torch.Tensor]] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
        if output_retentions is None and output_attentions is not None:
            output_retentions = output_attentions
        output_retentions = (
            output_retentions
            if output_retentions is not None
            else self.config.output_retentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )
        forward_impl = (
            forward_impl if forward_impl is not None else self.config.forward_impl
        )
        recurrent_chunk_size = (
            recurrent_chunk_size
            if recurrent_chunk_size is not None
            else self.config.recurrent_chunk_size
        )

        if retention_mask is None and attention_mask is not None:
            retention_mask = attention_mask

        outputs = self.model(
            input_ids,
            retention_mask=retention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            output_retentions=output_retentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            forward_impl=forward_impl,
            use_cache=use_cache,
            recurrent_chunk_size=recurrent_chunk_size,
            retention_rel_pos=retention_rel_pos,
        )

        hidden_states = outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError(
                "Cannot handle batch sizes > 1 if no padding token is defined."
            )
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                sequence_lengths = (
                    torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1
                ).to(logits.device)
            else:
                sequence_lengths = -1

        pooled_logits = logits[
            torch.arange(batch_size, device=logits.device), sequence_lengths
        ]

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (
                    labels.dtype == torch.long or labels.dtype == torch.int
                ):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(
                    pooled_logits.view(-1, self.num_labels), labels.view(-1)
                )
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )