p1atdev's picture
Update README.md
5182b66
metadata
license: mit
datasets:
  - isek-ai/danbooru-tags-2016-2023
language:
  - en
library_name: transformers

SDPrompt-RetNet-v2-beta

This model is a pretrained RetNet model trained from scratch using https://github.com/syncdoth/RetNet.

It achieves the following results on the evaluation set:

  • Loss: 0.5923

Usage

pip install transformers safetensors
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer

MODEL_NAME = "isek-ai/SDPrompt-RetNet-v2-beta"
DEVICE = "cuda"

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model= AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    torch_dtype=torch.float16, # or torch.bfloat16
    trust_remote_code=True,
).to(DEVICE)
model.eval()
streamer = TextStreamer(tokenizer)

prompt = "1girl"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
_ = model.generate(
    inputs["input_ids"],
    max_new_tokens=256,
    do_sample=True,
    top_p=0.9,
    top_k=20,
    temperature=0.9,
    streamer=streamer,
)
# 1girl, :<, bag, black hair, blurry, bokeh, cloud, depth of field, from side, long sleeves, night, outdoors, pleated skirt, power lines, purple eyes, road, scenery, shoes, shoulder bag,gasm, sidelocks, sign, skirt,let's drawsaurus, skylight smile, sneakers, standing, star (sky), sweater, town, traffic cone, utility pole, vending machine, wide-eyed, window, wooden box, yellow skirt,ization, zettai ryouiki, zoom layer, white footwear, zipper, zipper pull tab, zipperland sheet, zombie pose, ladder, leaning back, leg up, looking to the side,let, miniskirt, motion blur, musical note, open mouth, part

Model description

This model is trained with only Danbooru tags to generate prompts for image generation models.

Training data

Dataset filtering

TODO

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.975 0.07 500 1.0005
0.7549 0.13 1000 0.7604
0.6923 0.2 1500 0.7090
0.6753 0.26 2000 0.6778
0.6591 0.33 2500 0.6568
0.6337 0.39 3000 0.6429
0.6288 0.46 3500 0.6319
0.624 0.53 4000 0.6218
0.62 0.59 4500 0.6172
0.603 0.66 5000 0.6090
0.5931 0.72 5500 0.6032
0.5957 0.79 6000 0.5986
0.5972 0.85 6500 0.5948
0.5928 0.92 7000 0.5926
0.5904 0.98 7500 0.5923

Framework versions

  • Transformers 4.36.1
  • Pytorch 2.1.2+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0