SDPrompt-RetNet-v2-beta / modeling_retnet.py
p1atdev's picture
Upload 2 files
f4168f8
# modified from https://github.com/syncdoth/RetNet/blob/main/retnet/modeling_retnet.py
import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from transformers import top_k_top_p_filtering
from transformers.activations import ACT2FN
from transformers.modeling_outputs import ModelOutput, SequenceClassifierOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from .configuration_retnet import RetNetConfig
logger = logging.get_logger(__name__)
# helper functions
def split_heads(tensors, bsz, seqlen, num_heads):
assert isinstance(tensors, (tuple, list))
return [x.view(bsz, seqlen, num_heads, -1).transpose(1, 2) for x in tensors]
def rotate_every_two(x):
x1 = x[:, :, :, ::2]
x2 = x[:, :, :, 1::2]
x = torch.stack((-x2, x1), dim=-1)
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')\
def theta_shift(x, sin, cos):
return (x * cos) + (rotate_every_two(x) * sin)
def get_activation_fn(activation):
return ACT2FN[activation]
# Copied from https://github.com/huggingface/pytorch-image-models/blob/bbe798317fb26f063c18279827c038058e376479/timm/layers/drop.py#L137C1-L154C29
def drop_path(
x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True
):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
'survival rate' as the argument.
"""
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (
x.ndim - 1
) # work with diff dim tensors, not just 2D ConvNets
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0 and scale_by_keep:
random_tensor.div_(keep_prob)
return x * random_tensor
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float = 1e-6, elementwise_affine=True):
super().__init__()
self.normalized_shape = dim
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = nn.Parameter(torch.ones(dim))
else:
self.register_parameter("weight", None)
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
if self.weight is not None:
output = output * self.weight
return output
try:
from apex.normalization import FusedRMSNorm
RMSNorm = FusedRMSNorm # noqa
logger.info(
"Discovered apex.normalization.FusedRMSNorm - will use it instead of RMSNorm"
)
except ImportError:
# using the normal RMSNorm
pass
except Exception:
logger.warning("discovered apex but it failed to load, falling back to RMSNorm")
pass
class RetNetRelPos(nn.Module):
def __init__(self, config: RetNetConfig):
super().__init__()
self.config = config
num_heads = config.decoder_retention_heads
angle = 1.0 / (
10000 ** torch.linspace(0, 1, config.decoder_embed_dim // num_heads // 2)
)
angle = angle.unsqueeze(-1).repeat(1, 2).flatten()
# decay (gamma)
if config.use_lm_decay:
# NOTE: alternative way described in the paper
s = torch.log(torch.tensor(1 / 32))
e = torch.log(torch.tensor(1 / 512))
decay = torch.log(1 - torch.exp(torch.linspace(s, e, num_heads))) # [h,]
else:
decay = torch.log(
1 - 2 ** (-5 - torch.arange(num_heads, dtype=torch.float))
)
self.register_buffer("angle", angle)
self.register_buffer("decay", decay)
self.recurrent_chunk_size = config.recurrent_chunk_size
def forward(
self,
slen,
forward_impl="parallel",
recurrent_chunk_size=None,
retention_mask=None,
get_decay_scale=True,
):
if forward_impl == "recurrent":
sin = torch.sin(self.angle * (slen - 1))
cos = torch.cos(self.angle * (slen - 1))
retention_rel_pos = ((sin, cos), self.decay.view(1, -1, 1, 1).exp())
elif forward_impl == "chunkwise":
if recurrent_chunk_size is None:
recurrent_chunk_size = self.recurrent_chunk_size
index = torch.arange(slen).to(self.decay)
sin = torch.sin(index[:, None] * self.angle[None, :])
cos = torch.cos(index[:, None] * self.angle[None, :])
block_index = torch.arange(recurrent_chunk_size).to(self.decay)
mask = torch.tril(
torch.ones(recurrent_chunk_size, recurrent_chunk_size)
).to(self.decay)
mask = torch.masked_fill(
block_index[:, None] - block_index[None, :], ~mask.bool(), float("inf")
)
mask = torch.exp(mask * self.decay[:, None, None])
mask = torch.nan_to_num(mask)
mask = mask.unsqueeze(0) # [1, h, t, t]
# TODO: need to handle retention_mask
# scaling
value_inner_decay = mask[:, :, -1] / mask[:, :, -1].sum(
dim=-1, keepdim=True
)
value_inner_decay = value_inner_decay.unsqueeze(-1)
scale = mask.sum(dim=-1, keepdim=True).sqrt()
inner_mask = mask / scale
cross_decay = torch.exp(self.decay * recurrent_chunk_size)
query_inner_decay = torch.exp(self.decay[:, None] * (block_index + 1))
cross_decay = cross_decay[None, :, None, None]
query_inner_decay = query_inner_decay[None, :, :, None] / (
scale / mask[:, :, -1].sum(dim=-1)[:, :, None, None]
)
# decay_scale (used for kv cache)
if get_decay_scale:
decay_scale = self.compute_decay_scale(slen, retention_mask)
else:
decay_scale = None
retention_rel_pos = (
(sin, cos),
(
inner_mask,
cross_decay,
query_inner_decay,
value_inner_decay,
decay_scale,
),
)
else: # parallel
index = torch.arange(slen).to(self.decay)
sin = torch.sin(index[:, None] * self.angle[None, :])
cos = torch.cos(index[:, None] * self.angle[None, :])
mask = torch.tril(torch.ones(slen, slen)).to(self.decay)
mask = torch.masked_fill(
index[:, None] - index[None, :], ~mask.bool(), float("inf")
)
mask = torch.exp(mask * self.decay[:, None, None])
mask = torch.nan_to_num(mask)
mask = mask.unsqueeze(0) # [1, h, t, t]
if retention_mask is not None:
# this is required for left padding
mask = mask * retention_mask.float().view(-1, 1, 1, slen).to(mask)
# scaling
mask = mask / mask.sum(dim=-1, keepdim=True).sqrt()
mask = torch.nan_to_num(mask, nan=0.0)
# decay_scale (used for kv cache)
if get_decay_scale:
decay_scale = self.compute_decay_scale(slen, retention_mask)
else:
decay_scale = None
# mask processing for intra decay
if retention_mask is not None:
max_non_zero = (
torch.cumsum(retention_mask, dim=-1).max(dim=-1).indices
) # [b,]
intra_decay = mask[range(mask.shape[0]), :, max_non_zero]
else:
intra_decay = mask[:, :, -1]
retention_rel_pos = ((sin, cos), (mask, intra_decay, decay_scale))
return retention_rel_pos
def compute_decay_scale(self, slen, retention_mask=None):
exponent = torch.arange(slen, device=self.decay.device).float()
decay_scale = self.decay.exp().view(-1, 1) ** exponent.view(1, -1) # [h, t]
if retention_mask is not None:
seqlen = retention_mask.sum(dim=-1) # [b,]
bsz = seqlen.size(0)
decay_scale = decay_scale.unsqueeze(0).repeat(bsz, 1, 1) # [b, h, t]
for i, pos in enumerate(seqlen):
# the formula for decay_scale is `sum(gamma^i) for i in [0, slen).`
# Since the retention_mask is 0 for padding, we can set the decay_scale
# to 0 for the padding positions.
decay_scale[i, :, pos.item() :] = 0
else:
bsz = 1
decay_scale = decay_scale.sum(-1).view(bsz, -1, 1, 1) # [b, h, 1, 1]
return decay_scale
class MultiScaleRetention(nn.Module):
def __init__(
self,
config: RetNetConfig,
gate_fn="swish",
use_bias=False,
tensor_parallel=False,
):
super().__init__()
self.config = config
self.embed_dim = config.decoder_embed_dim
self.value_dim = config.decoder_value_embed_dim
self.num_heads = config.decoder_retention_heads
self.head_dim = self.value_dim // self.num_heads
self.key_dim = self.embed_dim // self.num_heads
self.scaling = self.key_dim**-0.5
self.gate_fn = get_activation_fn(activation=str(gate_fn))
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=use_bias)
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=use_bias)
self.v_proj = nn.Linear(self.embed_dim, self.value_dim, bias=use_bias)
self.g_proj = nn.Linear(self.embed_dim, self.value_dim, bias=use_bias)
self.out_proj = nn.Linear(self.value_dim, self.embed_dim, bias=use_bias)
self.group_norm = RMSNorm(
self.head_dim, eps=config.layernorm_eps, elementwise_affine=False
)
self.reset_parameters()
if tensor_parallel:
self.decay_proj = nn.Linear(self.num_heads, self.num_heads, bias=False)
else:
self.decay_proj = None
def reset_parameters(self):
nn.init.xavier_uniform_(self.q_proj.weight, gain=2**-2.5)
nn.init.xavier_uniform_(self.k_proj.weight, gain=2**-2.5)
nn.init.xavier_uniform_(self.v_proj.weight, gain=2**-2.5)
nn.init.xavier_uniform_(self.g_proj.weight, gain=2**-2.5)
nn.init.xavier_uniform_(self.out_proj.weight)
def parallel_retention(self, q, k, v, decay_mask):
"""
q, # bsz * num_head * len * qk_dim
k, # bsz * num_head * len * qk_dim
v, # bsz * num_head * len * v_dim
decay_mask, # (1 or bsz) * num_head * len * len
"""
decay_mask, intra_decay, scale = decay_mask
# just return retention_rel_pos projected
# TODO: for shardformer
if self.decay_proj is not None:
decay_mask = self.decay_proj(decay_mask.transpose(-1, -3)).transpose(-3, -1)
# [b, h, t, t]
retention = q @ k.transpose(-1, -2) # (scaled dot-product)
retention = retention * decay_mask
# invariant after normalization
retention = retention / retention.detach().sum(
dim=-1, keepdim=True
).abs().clamp(min=1)
output = retention.type_as(v) @ v # [b, h, t, v_dim / h]
output = output.transpose(1, 2) # [b, t, h, v_dim / h]
if self.training: # skip cache
return output, None, retention
if self.decay_proj is not None:
intra_decay = self.decay_proj(intra_decay.transpose(-1, -2)).transpose(
-2, -1
)
# kv cache: [b, h, t, v_dim, qk_dim]
current_kv = k.unsqueeze(-2) * v.unsqueeze(-1)
intra_decay = intra_decay[:, :, :, None, None] # [b, h, t, 1, 1]
current_kv = (current_kv * intra_decay).sum(2) # [b, h, v_dim, qk_dim]
cache = {"prev_key_value": current_kv, "scale": scale}
return output, cache, retention
def recurrent_retention(
self, q, k, v, decay, past_key_value=None, retention_mask=None
):
"""
q, k, v, # bsz * num_head * 1 * qkv_dim
past_key_value:
- "prev_key_value" # bsz * num_head * v_dim * qk_dim
- "scale" # (1 or bsz) * num_head * 1 * 1
decay # (1 or bsz) * num_head * 1 * 1
retention_mask # bsz * 1
"""
if retention_mask is not None:
retention_mask = retention_mask.float().view(-1, 1, 1, 1).to(decay)
else:
retention_mask = torch.ones(k.size(0), 1, 1, 1).to(decay)
# (b, h, v_dim, qk_dim)
current_kv = k * v.transpose(-1, -2) * retention_mask
if past_key_value is not None and "prev_key_value" in past_key_value:
prev_kv = past_key_value["prev_key_value"]
prev_scale = past_key_value["scale"]
scale = torch.where(retention_mask == 0, prev_scale, prev_scale * decay + 1)
# connect prev_kv and current_kv
# how much to decay prev_kv
decay_amount = prev_scale.sqrt() * decay / scale.sqrt()
decay_amount = torch.where(retention_mask == 0, 1, decay_amount)
prev_kv = prev_kv * decay_amount # decay prev_kv
current_kv = current_kv / scale.sqrt() # scale current_kv
current_kv = torch.nan_to_num(
current_kv, nan=0.0
) # remove nan, scale might be 0
current_kv = prev_kv + current_kv
else:
scale = torch.ones_like(decay)
# when retention_mask is 0 at the beginning, setting scale to 1 will
# make the first retention to use the padding incorrectly. Hence,
# setting it to 0 here. This is a little ugly, so we might want to
# change this later. TODO: improve
scale = torch.where(retention_mask == 0, torch.zeros_like(decay), scale)
output = torch.sum(q * current_kv, dim=3).unsqueeze(1) # (b, 1, h, d_v)
cache = {"prev_key_value": current_kv, "scale": scale}
return output, cache
def chunkwise_retention(self, q, k, v, decay_mask):
"""
q, k, v, # bsz * num_head * seqlen * qkv_dim
past_key_value:
- "prev_key_value" # bsz * num_head * v_dim * qk_dim
- "scale" # (1 or bsz) * num_head * 1 * 1
decay_mask, # 1 * num_head * chunk_size * chunk_size
cross_decay, # 1 * num_head * 1 * 1
inner_decay, # 1 * num_head * chunk_size * 1
"""
# TODO: not working properly
(
decay_mask,
cross_decay,
query_inner_decay,
value_inner_decay,
decay_scale,
) = decay_mask
bsz, _, tgt_len, _ = v.size()
chunk_len = decay_mask.size(-1)
assert tgt_len % chunk_len == 0
num_chunks = tgt_len // chunk_len
# [b, n_c, h, t_c, qkv_dim]
q = q.view(bsz, self.num_heads, num_chunks, chunk_len, self.key_dim).transpose(
1, 2
)
k = k.view(bsz, self.num_heads, num_chunks, chunk_len, self.key_dim).transpose(
1, 2
)
v = v.view(bsz, self.num_heads, num_chunks, chunk_len, self.head_dim).transpose(
1, 2
)
k_t = k.transpose(-1, -2)
qk_mat = q @ k_t # [b, n_c, h, t_c, t_c]
qk_mat = qk_mat * decay_mask.unsqueeze(1)
inner_scale = qk_mat.detach().abs().sum(dim=-1, keepdim=True).clamp(min=1)
qk_mat = qk_mat / inner_scale
# [b, n_c, h, t_c, v_dim]
inner_output = torch.matmul(qk_mat, v)
# reduce kv in one chunk
# [b, n_c, h, qk_dim, v_dim]
kv = k_t @ (v * value_inner_decay)
# kv = kv.view(bsz, num_chunks, self.num_heads, self.key_dim, self.head_dim)
kv_recurrent = []
cross_scale = []
kv_state = torch.zeros(bsz, self.num_heads, self.key_dim, self.head_dim).to(v)
kv_scale = torch.ones(bsz, self.num_heads, 1, 1).to(v)
# accumulate kv by loop
for i in range(num_chunks):
kv_recurrent.append(kv_state / kv_scale)
cross_scale.append(kv_scale)
kv_state = kv_state * cross_decay + kv[:, i]
kv_scale = (
kv_state.detach()
.abs()
.sum(dim=-2, keepdim=True)
.max(dim=-1, keepdim=True)
.values.clamp(min=1)
)
kv_recurrent = torch.stack(kv_recurrent, dim=1)
cross_scale = torch.stack(cross_scale, dim=1)
all_scale = torch.maximum(inner_scale, cross_scale)
align_inner_scale = all_scale / inner_scale
align_cross_scale = all_scale / cross_scale
cross_output = (q * query_inner_decay.unsqueeze(1)) @ kv_recurrent
output = inner_output / align_inner_scale + cross_output / align_cross_scale
output = output.transpose(2, 3) # [b, n_c, t_c, h, v_dim]
cache = {"prev_key_value": kv_state.transpose(-2, -1), "scale": decay_scale}
return output, cache
def forward(
self,
hidden_states: torch.Tensor,
rel_pos: Tuple[Tuple[torch.Tensor]],
retention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
forward_impl: str = "parallel",
output_retentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor]]:
B, T, H = hidden_states.size()
(sin, cos), decay_mask = rel_pos
# projections
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
g = self.g_proj(hidden_states)
# multi-head
q, k, v = split_heads((q, k, v), B, T, self.num_heads)
k *= self.scaling # for scaled dot product
# rotate
# NOTE: theta_shift has bug with mps device.
qr = theta_shift(q, sin, cos)
kr = theta_shift(k, sin, cos)
# retention
if forward_impl == "parallel":
retention_out, curr_kv, retention_weights = self.parallel_retention(
qr, kr, v, decay_mask
)
elif forward_impl == "recurrent":
retention_out, curr_kv = self.recurrent_retention(
qr,
kr,
v,
decay_mask,
past_key_value=past_key_value,
retention_mask=retention_mask,
)
elif forward_impl == "chunkwise":
retention_out, curr_kv = self.chunkwise_retention(qr, kr, v, decay_mask)
else:
raise ValueError(f"forward_impl {forward_impl} not supported.")
# concaat heads
normed = self.group_norm(retention_out).reshape(B, T, self.value_dim)
# out gate & proj
out = self.gate_fn(g) * normed
out = self.out_proj(out.type_as(hidden_states))
outputs = (out, curr_kv)
if output_retentions:
outputs += (retention_weights,) if forward_impl == "parallel" else (None,)
return outputs
class FeedForwardNetwork(nn.Module):
def __init__(
self,
embed_dim,
ffn_dim,
activation_fn,
dropout,
activation_dropout,
layernorm_eps,
subln=False,
use_rms_norm=False,
):
super().__init__()
self.embed_dim = embed_dim
self.activation_fn = get_activation_fn(activation=str(activation_fn))
self.activation_dropout_module = torch.nn.Dropout(activation_dropout)
self.dropout_module = torch.nn.Dropout(dropout)
self.fc1 = nn.Linear(self.embed_dim, ffn_dim)
self.fc2 = nn.Linear(ffn_dim, self.embed_dim)
if subln:
if use_rms_norm:
self.ffn_layernorm = RMSNorm(ffn_dim, eps=layernorm_eps)
else:
self.ffn_layernorm = LayerNorm(ffn_dim, eps=layernorm_eps)
else:
self.ffn_layernorm = None
def reset_parameters(self):
self.fc1.reset_parameters()
self.fc2.reset_parameters()
if self.ffn_layernorm is not None:
self.ffn_layernorm.reset_parameters()
def forward(self, x):
x_shape = x.shape
x = x.reshape(-1, x.size(-1))
x = self.fc1(x)
x = self.activation_fn(x.float()).type_as(x)
x = self.activation_dropout_module(x)
if self.ffn_layernorm is not None:
x = self.ffn_layernorm(x)
x = self.fc2(x)
x = x.view(x_shape)
x = self.dropout_module(x)
return x
class GLU(nn.Module):
def __init__(
self,
embed_dim,
ffn_dim,
activation_fn,
dropout,
activation_dropout,
):
super().__init__()
self.embed_dim = embed_dim
self.activation_fn = get_activation_fn(activation=str(activation_fn))
self.activation_dropout_module = torch.nn.Dropout(activation_dropout)
self.dropout_module = torch.nn.Dropout(dropout)
self.fc1 = nn.Linear(self.embed_dim, ffn_dim, bias=False)
self.fc2 = nn.Linear(ffn_dim, self.embed_dim, bias=False)
self.gate = nn.Linear(self.embed_dim, ffn_dim, bias=False)
def reset_parameters(self):
self.fc1.reset_parameters()
self.fc2.reset_parameters()
self.gate.reset_parameters()
def forward(self, x):
x_shape = x.shape
x = x.reshape(-1, x.size(-1))
g = self.gate(x)
x = self.fc1(x)
x = self.activation_fn(x.float()).type_as(x) * g
x = self.activation_dropout_module(x)
x = self.fc2(x)
x = x.view(x_shape)
x = self.dropout_module(x)
return x
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self):
return "p={}".format(self.drop_prob)
class RetNetDecoderLayer(nn.Module):
def __init__(self, config: RetNetConfig, depth: int, tensor_parallel: bool = False):
super().__init__()
self.config = config
self.embed_dim = config.decoder_embed_dim
self.dropout_module = torch.nn.Dropout(config.dropout)
if config.drop_path_rate > 0:
drop_path_prob = np.linspace(
0, config.drop_path_rate, config.decoder_layers
)[depth]
self.drop_path = DropPath(drop_path_prob)
else:
self.drop_path = None
self.retention = MultiScaleRetention(
config, use_bias=False, tensor_parallel=tensor_parallel
)
self.normalize_before = config.decoder_normalize_before
self.retention_layer_norm = RMSNorm(self.embed_dim, eps=config.layernorm_eps)
self.ffn_dim = config.decoder_ffn_embed_dim
self.ffn = self.build_ffn()
self.final_layer_norm = RMSNorm(self.embed_dim, eps=config.layernorm_eps)
if config.deepnorm:
self.alpha = math.pow(2.0 * config.decoder_layers, 0.25)
else:
self.alpha = 1.0
def build_ffn(self):
if self.config.use_glu:
return GLU(
self.embed_dim,
self.ffn_dim,
self.config.activation_fn,
self.config.dropout,
self.config.activation_dropout,
)
else:
return FeedForwardNetwork(
self.embed_dim,
self.ffn_dim,
self.config.activation_fn,
self.config.dropout,
self.config.activation_dropout,
self.config.layernorm_eps,
self.config.subln,
self.config.use_ffn_rms_norm,
)
def residual_connection(self, x, residual):
return residual * self.alpha + x
def forward(
self,
hidden_states: torch.Tensor,
retention_rel_pos: Tuple[Tuple[torch.Tensor]],
retention_mask: Optional[torch.Tensor] = None,
forward_impl: str = "parallel",
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_retentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor, torch.FloatTensor, Optional[torch.FloatTensor]]:
residual = hidden_states
if self.normalize_before:
hidden_states = self.retention_layer_norm(hidden_states)
msr_outs = self.retention(
hidden_states,
retention_rel_pos,
retention_mask=retention_mask,
past_key_value=past_key_value,
forward_impl=forward_impl,
output_retentions=output_retentions,
)
hidden_states = msr_outs[0]
curr_kv = msr_outs[1]
hidden_states = self.dropout_module(hidden_states)
if self.drop_path is not None:
hidden_states = self.drop_path(hidden_states)
hidden_states = self.residual_connection(hidden_states, residual)
if not self.normalize_before:
hidden_states = self.retention_layer_norm(hidden_states)
residual = hidden_states
if self.normalize_before:
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.ffn(hidden_states)
if self.drop_path is not None:
hidden_states = self.drop_path(hidden_states)
hidden_states = self.residual_connection(hidden_states, residual)
if not self.normalize_before:
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states, curr_kv)
if output_retentions:
outputs += (msr_outs[2],)
return outputs
class RetNetPreTrainedModel(PreTrainedModel):
# copied from LlamaPretrainedModel
config_class = RetNetConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["RetNetDecoderLayer"]
_keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
def _init_weights(self, module):
"""
Following original retnet, weights are already initialized in their own
ways within their own init.
"""
pass
# below is copied from LlamaPretrainedModel
# std = self.config.initializer_range
# if isinstance(module, nn.Linear):
# module.weight.data.normal_(mean=0.0, std=std)
# if module.bias is not None:
# module.bias.data.zero_()
# elif isinstance(module, nn.Embedding):
# module.weight.data.normal_(mean=0.0, std=std)
# if module.padding_idx is not None:
# module.weight.data[module.padding_idx].zero_()
@dataclass
class RetNetOutputWithPast(ModelOutput):
"""
class for RetNet model's outputs that may also contain a past key/values (to speed up sequential decoding).
config:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, decoder_embed_dim)`):
Sequence of hidden-states at the output of the last layer of the model.
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
decoder_embed_dim)` is output.
past_key_values (`List(Dict(str, torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- "prev_key_value": shape=(bsz * num_head * v_dim * qk_dim)
- "scale": shape=((1 or bsz) * num_head * 1 * 1)
Contains pre-computed hidden-states (key and values in the multi-scale retention blocks)
that can be used (see `past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, decoder_embed_dim)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
retentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_retentions=True` is passed or when `config.output_retentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Retentions weights, used for visualization.
attentions (`tuple(torch.FloatTensor)`, *optional*, for backward compatibility. Same as retentions.
"""
last_hidden_state: torch.FloatTensor = None
past_key_values: Optional[List[Dict[str, torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
retentions: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
class RetNetModel(RetNetPreTrainedModel):
def __init__(
self,
config: RetNetConfig,
embed_tokens: nn.Embedding = None,
tensor_parallel: bool = False,
):
super().__init__(config)
self.config = config
self.dropout_module = torch.nn.Dropout(config.dropout)
self.embed_dim = config.decoder_embed_dim
self.embed_scale = (
1.0 if config.no_scale_embedding else math.sqrt(self.embed_dim)
)
if embed_tokens is None:
embed_tokens = nn.Embedding(
config.vocab_size, config.decoder_embed_dim, config.pad_token_id
)
self.embed_tokens = embed_tokens
if config.layernorm_embedding:
self.layernorm_embedding = RMSNorm(self.embed_dim, eps=config.layernorm_eps)
else:
self.layernorm_embedding = None
self.layers = nn.ModuleList([])
for i in range(config.decoder_layers):
self.layers.append(
RetNetDecoderLayer(config, depth=i, tensor_parallel=tensor_parallel)
)
self.decoder_layers = len(self.layers)
if config.decoder_normalize_before:
self.layer_norm = RMSNorm(self.embed_dim, eps=config.layernorm_eps)
else:
self.layer_norm = None
self.retnet_rel_pos = RetNetRelPos(config)
self.recurrent_chunk_size = config.recurrent_chunk_size
if config.deepnorm:
init_scale = math.pow(8.0 * config.decoder_layers, 0.25)
for name, p in self.named_parameters():
if (
"fc1" in name
or "fc2" in name
or "out_proj" in name
or "v_proj" in name
):
p.data.div_(init_scale)
if config.subln and not config.use_glu:
init_scale = math.sqrt(math.log(config.decoder_layers * 2))
for name, p in self.named_parameters():
if (
"fc1" in name
or "fc2" in name
or "out_proj" in name
or "v_proj" in name
):
p.data.mul_(init_scale)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward_embedding(
self,
input_ids,
forward_impl,
inputs_embeds=None,
past_key_values=None,
):
# Check if input_ids are within the range
if input_ids.max() >= self.config.vocab_size:
raise ValueError("All input_ids must be less than vocab_size")
# if past_key_values is not None:
if forward_impl == "recurrent":
input_ids = input_ids[:, -1:]
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
embed = self.embed_scale * inputs_embeds
if self.layernorm_embedding is not None:
embed = self.layernorm_embedding(embed)
embed = self.dropout_module(embed)
return embed
def forward(
self,
input_ids: torch.LongTensor = None,
retention_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[Dict[str, torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_retentions: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
use_cache: Optional[bool] = None,
return_dict: Optional[bool] = None,
forward_impl: Optional[str] = "parallel",
recurrent_chunk_size: Optional[int] = None,
retention_rel_pos: Optional[Tuple[torch.Tensor]] = None,
) -> Union[Tuple, RetNetOutputWithPast]:
if output_retentions is None and output_attentions is not None:
output_retentions = output_attentions
output_retentions = (
output_retentions
if output_retentions is not None
else self.config.output_retentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time"
)
elif input_ids is not None:
batch_size, seq_length = input_ids.shape
elif inputs_embeds is not None:
batch_size, seq_length, _ = inputs_embeds.shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
# embed tokens
if inputs_embeds is None:
inputs_embeds = self.forward_embedding(
input_ids, forward_impl, inputs_embeds, past_key_values
)
if retention_mask is None and attention_mask is not None:
retention_mask = attention_mask
if retention_mask is not None and forward_impl == "recurrent":
retention_mask = retention_mask[:, -1:]
hidden_states = inputs_embeds
# handling chunking here
if recurrent_chunk_size is None:
recurrent_chunk_size = self.recurrent_chunk_size
need_pad_for_chunkwise = (
forward_impl == "chunkwise" and seq_length % recurrent_chunk_size != 0
)
if need_pad_for_chunkwise:
padding_len = recurrent_chunk_size - seq_length % recurrent_chunk_size
slen = seq_length + padding_len
hidden_states = F.pad(hidden_states, (0, 0, 0, padding_len))
else:
slen = seq_length
# relative position
if retention_rel_pos is None:
retention_rel_pos = self.retnet_rel_pos(
slen,
forward_impl=forward_impl,
recurrent_chunk_size=recurrent_chunk_size,
retention_mask=retention_mask,
get_decay_scale=not self.training,
)
# start running through the decoder layers
all_hidden_states = () if output_hidden_states else None
all_retentions = () if output_retentions else None
# layers * [bsz, num_head, qk_dim, decoder_embed_dim]
next_decoder_cache = () if use_cache else None
for idx, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = (
past_key_values[idx] if past_key_values is not None else None
)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_retentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(layer),
hidden_states,
retention_rel_pos,
retention_mask,
forward_impl,
past_key_value,
)
else:
layer_outputs = layer(
hidden_states,
retention_rel_pos,
retention_mask=retention_mask,
forward_impl=forward_impl,
past_key_value=past_key_value,
output_retentions=output_retentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[1],)
if output_retentions:
all_retentions += (layer_outputs[2],)
next_cache = next_decoder_cache if use_cache else None
if need_pad_for_chunkwise:
hidden_states = hidden_states[:, :seq_length, :]
if self.layer_norm is not None:
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_retentions]
if v is not None
)
return RetNetOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
retentions=all_retentions,
attentions=all_retentions,
)
@dataclass
class RetNetCausalLMOutputWithPast(ModelOutput):
"""
class for RetNet causal language model (or autoregressive) outputs.
config:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`List(Dict(str, torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
- "prev_key_value": shape=(bsz * num_head * v_dim * qk_dim)
- "scale": shape=((1 or bsz) * num_head * 1 * 1)
Contains pre-computed hidden-states (key and values in the multi-scale retention blocks)
that can be used (see `past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, decoder_embed_dim)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
retentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_retentions=True` is passed or when `config.output_retentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Retentions weights, used for visualization.
attentions (`tuple(torch.FloatTensor)`, *optional*, for backward compatibility. Same as retentions.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[List[Dict[str, torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
retentions: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
class RetNetForCausalLM(RetNetPreTrainedModel):
def __init__(
self,
config: RetNetConfig,
embed_tokens: nn.Embedding = None,
tensor_parallel: bool = False,
) -> None:
super().__init__(config)
self.model = RetNetModel(
config, embed_tokens=embed_tokens, tensor_parallel=tensor_parallel
)
self.lm_head = nn.Linear(
config.decoder_embed_dim, config.vocab_size, bias=False
)
# init here
torch.nn.init.normal_(
self.lm_head.weight, mean=0, std=config.decoder_embed_dim**-0.5
)
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
retention_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_retentions: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
forward_impl: Optional[str] = None,
recurrent_chunk_size: Optional[int] = None,
retention_rel_pos: Optional[Tuple[torch.Tensor]] = None,
) -> Union[Tuple, RetNetCausalLMOutputWithPast]:
if output_retentions is None and output_attentions is not None:
output_retentions = output_attentions
output_retentions = (
output_retentions
if output_retentions is not None
else self.config.output_retentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
forward_impl = (
forward_impl if forward_impl is not None else self.config.forward_impl
)
recurrent_chunk_size = (
recurrent_chunk_size
if recurrent_chunk_size is not None
else self.config.recurrent_chunk_size
)
if retention_mask is None and attention_mask is not None:
retention_mask = attention_mask
outputs = self.model(
input_ids,
retention_mask=retention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
output_retentions=output_retentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
forward_impl=forward_impl,
use_cache=use_cache,
recurrent_chunk_size=recurrent_chunk_size,
retention_rel_pos=retention_rel_pos,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model parallelism
shift_labels = shift_labels.to(shift_logits.device)
loss = loss_fct(shift_logits, shift_labels)
if self.config.z_loss_coeff > 0:
# z_loss from PaLM paper
# z_loss = 1e-4 * log(log(z)), where z = sum(exp(logits))
z_loss = torch.logsumexp(shift_logits, dim=-1).log().mean()
loss += self.config.z_loss_coeff * z_loss
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return RetNetCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
retentions=outputs.retentions,
attentions=outputs.retentions,
)
def _crop_past_key_values(model, past_key_values, maximum_length):
"""Since retnet's kv do not have length, no need to crop. Just return"""
return past_key_values
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs,
):
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
forward_impl = kwargs.get("forward_impl", "parallel")
if past_key_values is not None:
forward_impl = "recurrent"
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"forward_impl": forward_impl,
}
)
return model_inputs
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values: # dict
layer_past_kv = layer_past["prev_key_value"] # [b, h, v_dim / h, qk_dim]
layer_past_scale = layer_past["scale"] # [b, h, 1, 1]
if layer_past_scale.size(0) > 1:
# this means that retention_mask is not None, so the scale for
# each batch is different. We need to select the correct scale then.
# NOTE: during huggingface generate, it will generate attention_mask
# if it is None, so this linke will always be true. Still, having
# this line here for safety.
layer_past_scale = layer_past_scale.index_select(0, beam_idx)
reordered_past += (
{
"prev_key_value": layer_past_kv.index_select(0, beam_idx),
"scale": layer_past_scale,
},
)
return reordered_past
def sample_token(self, logit, do_sample=False, top_k=1, top_p=1.0, temperature=1.0):
if not do_sample:
return torch.argmax(logit, dim=-1, keepdim=True)
filtered = top_k_top_p_filtering(logit / temperature, top_k=top_k, top_p=top_p)
return torch.multinomial(torch.softmax(filtered, dim=-1), num_samples=1)
@torch.inference_mode()
def custom_generate(
self,
input_ids: torch.LongTensor = None,
retention_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
parallel_compute_prompt=True,
max_new_tokens=20,
bos_token_id=0,
eos_token_id=0,
do_sample=False,
top_k=0,
top_p=1.0,
temperature=1.0,
early_stopping=True,
):
if retention_mask is None and attention_mask is not None:
retention_mask = attention_mask
if input_ids is not None:
if input_ids.shape[1] == 1:
past_key_values = None
elif parallel_compute_prompt:
ret_mask = (
retention_mask[:, :-1] if retention_mask is not None else None
)
outputs = self(
input_ids[:, :-1],
retention_mask=ret_mask,
forward_impl="parallel",
return_dict=True,
use_cache=True,
)
past_key_values = outputs.past_key_values
else:
past_key_values = None
for p_i in range(input_ids.shape[1] - 1):
ret_mask = (
retention_mask[:, : p_i + 1]
if retention_mask is not None
else None
)
outputs = self(
input_ids[:, : p_i + 1],
retention_mask=ret_mask,
forward_impl="recurrent",
past_key_values=past_key_values,
return_dict=True,
use_cache=True,
)
past_key_values = outputs.past_key_values
generated = input_ids
else:
generated = torch.tensor([[bos_token_id]]).to(self.lm_head.weight.device)
past_key_values = None
for i in range(max_new_tokens):
outputs = self(
generated,
retention_mask=retention_mask,
forward_impl="recurrent",
past_key_values=past_key_values,
use_cache=True,
return_dict=True,
)
logit = outputs.logits[:, -1, :] # [batch_size, vocab_size]
past_key_values = outputs.past_key_values
token = self.sample_token(
logit,
do_sample=do_sample,
top_k=top_k,
top_p=top_p,
temperature=temperature,
)
generated = torch.cat([generated, token], dim=-1)
if retention_mask is not None:
retention_mask = torch.cat(
[retention_mask, torch.ones_like(token)], dim=-1
)
if early_stopping and (token == eos_token_id).all():
break
return generated
class RetNetForSequenceClassification(RetNetPreTrainedModel):
def __init__(self, config, tensor_parallel=False):
super().__init__(config)
self.num_labels = config.num_labels
self.model = RetNetModel(config, tensor_parallel=tensor_parallel)
self.score = nn.Linear(config.decoder_embed_dim, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
retention_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_retentions: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
forward_impl: Optional[str] = None,
recurrent_chunk_size: Optional[int] = None,
retention_rel_pos: Optional[Tuple[torch.Tensor]] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
if output_retentions is None and output_attentions is not None:
output_retentions = output_attentions
output_retentions = (
output_retentions
if output_retentions is not None
else self.config.output_retentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
forward_impl = (
forward_impl if forward_impl is not None else self.config.forward_impl
)
recurrent_chunk_size = (
recurrent_chunk_size
if recurrent_chunk_size is not None
else self.config.recurrent_chunk_size
)
if retention_mask is None and attention_mask is not None:
retention_mask = attention_mask
outputs = self.model(
input_ids,
retention_mask=retention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
output_retentions=output_retentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
forward_impl=forward_impl,
use_cache=use_cache,
recurrent_chunk_size=recurrent_chunk_size,
retention_rel_pos=retention_rel_pos,
)
hidden_states = outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError(
"Cannot handle batch sizes > 1 if no padding token is defined."
)
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
sequence_lengths = (
torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1
).to(logits.device)
else:
sequence_lengths = -1
pooled_logits = logits[
torch.arange(batch_size, device=logits.device), sequence_lengths
]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (
labels.dtype == torch.long or labels.dtype == torch.int
):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(
pooled_logits.view(-1, self.num_labels), labels.view(-1)
)
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)