isekai-bert-v1 / README.md
p1atdev's picture
Update README.md
db6575e
---
license: apache-2.0
base_model: cl-tohoku/bert-base-japanese-v3
tags:
- generated_from_trainer
model-index:
- name: isekai-bert-v1
results: []
language:
- ja
library_name: transformers
widget:
- text: "異世界に[MASK]する"
example_title: "例1"
- text: "[MASK]者ギルドへ向かう"
example_title: "例2"
- text: "あの美少女は俺の[MASK]である"
example_title: "例3"
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# isekai-bert-v1
This model is a fine-tuned version of [cl-tohoku/bert-base-japanese-v3](https://huggingface.co/cl-tohoku/bert-base-japanese-v3) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9164
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.9144 | 0.06 | 1000 | 2.6322 |
| 3.0793 | 0.13 | 2000 | 2.7752 |
| 3.0591 | 0.19 | 3000 | 2.8336 |
| 2.972 | 0.26 | 4000 | 2.9084 |
| 2.9967 | 0.32 | 5000 | 2.8845 |
| 2.9489 | 0.38 | 6000 | 2.7112 |
| 2.8639 | 0.45 | 7000 | 2.7209 |
| 2.8355 | 0.51 | 8000 | 2.6684 |
| 2.8162 | 0.58 | 9000 | 2.6209 |
| 2.7648 | 0.64 | 10000 | 2.5749 |
| 2.6663 | 0.7 | 11000 | 2.5231 |
| 2.6451 | 0.77 | 12000 | 2.4754 |
| 2.6041 | 0.83 | 13000 | 2.4279 |
| 2.5306 | 0.9 | 14000 | 2.3829 |
| 2.4765 | 0.96 | 15000 | 2.3137 |
| 2.3899 | 1.02 | 16000 | 2.3052 |
| 2.3681 | 1.09 | 17000 | 2.2123 |
| 2.2821 | 1.15 | 18000 | 2.1934 |
| 2.2288 | 1.22 | 19000 | 2.1399 |
| 2.1858 | 1.28 | 20000 | 2.0922 |
| 2.1964 | 1.34 | 21000 | 2.0689 |
| 2.1419 | 1.41 | 22000 | 2.0357 |
| 2.1011 | 1.47 | 23000 | 2.0327 |
| 2.039 | 1.54 | 24000 | 1.9853 |
| 2.0284 | 1.6 | 25000 | 1.9778 |
| 2.0253 | 1.66 | 26000 | 1.9869 |
| 2.0292 | 1.73 | 27000 | 1.9494 |
| 2.0016 | 1.79 | 28000 | 1.9158 |
| 2.0387 | 1.86 | 29000 | 1.9778 |
| 1.9679 | 1.92 | 30000 | 1.9171 |
| 2.0441 | 1.98 | 31000 | 1.9164 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.0.0+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0