File size: 5,632 Bytes
166cd3b
 
 
 
 
 
 
 
 
 
 
 
 
 
048f809
7a23d6b
048f809
 
166cd3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
706d1b7
 
 
166cd3b
706d1b7
 
166cd3b
 
048f809
706d1b7
166cd3b
 
7a23d6b
 
048f809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a23d6b
 
166cd3b
 
706d1b7
166cd3b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec_asr_swbd
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec_asr_swbd

This model is a fine-tuned version of [facebook/wav2vec2-large-robust-ft-swbd-300h](https://huggingface.co/facebook/wav2vec2-large-robust-ft-swbd-300h) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3052
- Wer: 0.5302

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 20
- total_train_batch_size: 80
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.5445        | 0.29  | 500   | 0.9114          | 0.6197 |
| 0.9397        | 0.58  | 1000  | 0.5057          | 0.5902 |
| 0.8557        | 0.86  | 1500  | 0.4465          | 0.6264 |
| 0.7716        | 1.15  | 2000  | 0.4182          | 0.5594 |
| 0.7659        | 1.44  | 2500  | 0.4111          | 0.7048 |
| 0.7406        | 1.73  | 3000  | 0.3927          | 0.5944 |
| 0.6857        | 2.02  | 3500  | 0.3852          | 0.7118 |
| 0.7113        | 2.31  | 4000  | 0.3775          | 0.5608 |
| 0.6804        | 2.59  | 4500  | 0.3885          | 0.5759 |
| 0.6654        | 2.88  | 5000  | 0.3703          | 0.7226 |
| 0.6569        | 3.17  | 5500  | 0.3688          | 0.5972 |
| 0.6335        | 3.46  | 6000  | 0.3661          | 0.7278 |
| 0.6309        | 3.75  | 6500  | 0.3579          | 0.6324 |
| 0.6231        | 4.03  | 7000  | 0.3620          | 0.5770 |
| 0.6171        | 4.32  | 7500  | 0.3640          | 0.5772 |
| 0.6191        | 4.61  | 8000  | 0.3553          | 0.6075 |
| 0.6142        | 4.9   | 8500  | 0.3543          | 0.6126 |
| 0.5905        | 5.19  | 9000  | 0.3601          | 0.6319 |
| 0.5846        | 5.48  | 9500  | 0.3429          | 0.7343 |
| 0.5874        | 5.76  | 10000 | 0.3429          | 0.5962 |
| 0.5768        | 6.05  | 10500 | 0.3381          | 0.7410 |
| 0.5783        | 6.34  | 11000 | 0.3391          | 0.5823 |
| 0.5835        | 6.63  | 11500 | 0.3447          | 0.5821 |
| 0.5817        | 6.92  | 12000 | 0.3314          | 0.6890 |
| 0.5459        | 7.2   | 12500 | 0.3363          | 0.5727 |
| 0.5575        | 7.49  | 13000 | 0.3363          | 0.7387 |
| 0.5505        | 7.78  | 13500 | 0.3368          | 0.5685 |
| 0.55          | 8.07  | 14000 | 0.3330          | 0.5587 |
| 0.5523        | 8.36  | 14500 | 0.3338          | 0.5484 |
| 0.5116        | 8.65  | 15000 | 0.3350          | 0.4351 |
| 0.5263        | 8.93  | 15500 | 0.3254          | 0.6235 |
| 0.5265        | 9.22  | 16000 | 0.3297          | 0.6207 |
| 0.5265        | 9.51  | 16500 | 0.3279          | 0.6143 |
| 0.5172        | 9.8   | 17000 | 0.3260          | 0.5800 |
| 0.5028        | 10.09 | 17500 | 0.3259          | 0.5774 |
| 0.5062        | 10.37 | 18000 | 0.3259          | 0.5552 |
| 0.5112        | 10.66 | 18500 | 0.3201          | 0.6625 |
| 0.5149        | 10.95 | 19000 | 0.3184          | 0.6865 |
| 0.4939        | 11.24 | 19500 | 0.3152          | 0.6116 |
| 0.5065        | 11.53 | 20000 | 0.3172          | 0.5246 |
| 0.5129        | 11.82 | 20500 | 0.3129          | 0.5908 |
| 0.4909        | 12.1  | 21000 | 0.3152          | 0.6075 |
| 0.4865        | 12.39 | 21500 | 0.3160          | 0.5037 |
| 0.4805        | 12.68 | 22000 | 0.3139          | 0.5458 |
| 0.4691        | 12.97 | 22500 | 0.3225          | 0.5815 |
| 0.4534        | 13.26 | 23000 | 0.3168          | 0.5614 |
| 0.4661        | 13.54 | 23500 | 0.3135          | 0.6053 |
| 0.4636        | 13.83 | 24000 | 0.3120          | 0.5142 |
| 0.4554        | 14.12 | 24500 | 0.3127          | 0.5552 |
| 0.4602        | 14.41 | 25000 | 0.3117          | 0.5562 |
| 0.4521        | 14.7  | 25500 | 0.3106          | 0.4995 |
| 0.4369        | 14.99 | 26000 | 0.3100          | 0.5663 |
| 0.4249        | 15.27 | 26500 | 0.3110          | 0.5262 |
| 0.4321        | 15.56 | 27000 | 0.3106          | 0.5183 |
| 0.4293        | 15.85 | 27500 | 0.3091          | 0.5311 |
| 0.4537        | 16.14 | 28000 | 0.3134          | 0.4986 |
| 0.4258        | 16.43 | 28500 | 0.3138          | 0.4487 |
| 0.4347        | 16.71 | 29000 | 0.3091          | 0.5011 |
| 0.4615        | 17.0  | 29500 | 0.3068          | 0.5616 |
| 0.4163        | 17.29 | 30000 | 0.3115          | 0.5426 |
| 0.4074        | 17.58 | 30500 | 0.3079          | 0.5341 |
| 0.4121        | 17.87 | 31000 | 0.3047          | 0.5619 |
| 0.4219        | 18.16 | 31500 | 0.3085          | 0.5051 |
| 0.4049        | 18.44 | 32000 | 0.3084          | 0.5116 |
| 0.4119        | 18.73 | 32500 | 0.3071          | 0.5028 |
| 0.4129        | 19.02 | 33000 | 0.3064          | 0.5030 |
| 0.4143        | 19.31 | 33500 | 0.3040          | 0.5086 |
| 0.4013        | 19.6  | 34000 | 0.3057          | 0.5271 |
| 0.4162        | 19.88 | 34500 | 0.3052          | 0.5302 |


### Framework versions

- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 1.18.4
- Tokenizers 0.11.6