File size: 5,632 Bytes
166cd3b 048f809 7a23d6b 048f809 166cd3b 706d1b7 166cd3b 706d1b7 166cd3b 048f809 706d1b7 166cd3b 7a23d6b 048f809 7a23d6b 166cd3b 706d1b7 166cd3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec_asr_swbd
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec_asr_swbd
This model is a fine-tuned version of [facebook/wav2vec2-large-robust-ft-swbd-300h](https://huggingface.co/facebook/wav2vec2-large-robust-ft-swbd-300h) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3052
- Wer: 0.5302
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 20
- total_train_batch_size: 80
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 1.5445 | 0.29 | 500 | 0.9114 | 0.6197 |
| 0.9397 | 0.58 | 1000 | 0.5057 | 0.5902 |
| 0.8557 | 0.86 | 1500 | 0.4465 | 0.6264 |
| 0.7716 | 1.15 | 2000 | 0.4182 | 0.5594 |
| 0.7659 | 1.44 | 2500 | 0.4111 | 0.7048 |
| 0.7406 | 1.73 | 3000 | 0.3927 | 0.5944 |
| 0.6857 | 2.02 | 3500 | 0.3852 | 0.7118 |
| 0.7113 | 2.31 | 4000 | 0.3775 | 0.5608 |
| 0.6804 | 2.59 | 4500 | 0.3885 | 0.5759 |
| 0.6654 | 2.88 | 5000 | 0.3703 | 0.7226 |
| 0.6569 | 3.17 | 5500 | 0.3688 | 0.5972 |
| 0.6335 | 3.46 | 6000 | 0.3661 | 0.7278 |
| 0.6309 | 3.75 | 6500 | 0.3579 | 0.6324 |
| 0.6231 | 4.03 | 7000 | 0.3620 | 0.5770 |
| 0.6171 | 4.32 | 7500 | 0.3640 | 0.5772 |
| 0.6191 | 4.61 | 8000 | 0.3553 | 0.6075 |
| 0.6142 | 4.9 | 8500 | 0.3543 | 0.6126 |
| 0.5905 | 5.19 | 9000 | 0.3601 | 0.6319 |
| 0.5846 | 5.48 | 9500 | 0.3429 | 0.7343 |
| 0.5874 | 5.76 | 10000 | 0.3429 | 0.5962 |
| 0.5768 | 6.05 | 10500 | 0.3381 | 0.7410 |
| 0.5783 | 6.34 | 11000 | 0.3391 | 0.5823 |
| 0.5835 | 6.63 | 11500 | 0.3447 | 0.5821 |
| 0.5817 | 6.92 | 12000 | 0.3314 | 0.6890 |
| 0.5459 | 7.2 | 12500 | 0.3363 | 0.5727 |
| 0.5575 | 7.49 | 13000 | 0.3363 | 0.7387 |
| 0.5505 | 7.78 | 13500 | 0.3368 | 0.5685 |
| 0.55 | 8.07 | 14000 | 0.3330 | 0.5587 |
| 0.5523 | 8.36 | 14500 | 0.3338 | 0.5484 |
| 0.5116 | 8.65 | 15000 | 0.3350 | 0.4351 |
| 0.5263 | 8.93 | 15500 | 0.3254 | 0.6235 |
| 0.5265 | 9.22 | 16000 | 0.3297 | 0.6207 |
| 0.5265 | 9.51 | 16500 | 0.3279 | 0.6143 |
| 0.5172 | 9.8 | 17000 | 0.3260 | 0.5800 |
| 0.5028 | 10.09 | 17500 | 0.3259 | 0.5774 |
| 0.5062 | 10.37 | 18000 | 0.3259 | 0.5552 |
| 0.5112 | 10.66 | 18500 | 0.3201 | 0.6625 |
| 0.5149 | 10.95 | 19000 | 0.3184 | 0.6865 |
| 0.4939 | 11.24 | 19500 | 0.3152 | 0.6116 |
| 0.5065 | 11.53 | 20000 | 0.3172 | 0.5246 |
| 0.5129 | 11.82 | 20500 | 0.3129 | 0.5908 |
| 0.4909 | 12.1 | 21000 | 0.3152 | 0.6075 |
| 0.4865 | 12.39 | 21500 | 0.3160 | 0.5037 |
| 0.4805 | 12.68 | 22000 | 0.3139 | 0.5458 |
| 0.4691 | 12.97 | 22500 | 0.3225 | 0.5815 |
| 0.4534 | 13.26 | 23000 | 0.3168 | 0.5614 |
| 0.4661 | 13.54 | 23500 | 0.3135 | 0.6053 |
| 0.4636 | 13.83 | 24000 | 0.3120 | 0.5142 |
| 0.4554 | 14.12 | 24500 | 0.3127 | 0.5552 |
| 0.4602 | 14.41 | 25000 | 0.3117 | 0.5562 |
| 0.4521 | 14.7 | 25500 | 0.3106 | 0.4995 |
| 0.4369 | 14.99 | 26000 | 0.3100 | 0.5663 |
| 0.4249 | 15.27 | 26500 | 0.3110 | 0.5262 |
| 0.4321 | 15.56 | 27000 | 0.3106 | 0.5183 |
| 0.4293 | 15.85 | 27500 | 0.3091 | 0.5311 |
| 0.4537 | 16.14 | 28000 | 0.3134 | 0.4986 |
| 0.4258 | 16.43 | 28500 | 0.3138 | 0.4487 |
| 0.4347 | 16.71 | 29000 | 0.3091 | 0.5011 |
| 0.4615 | 17.0 | 29500 | 0.3068 | 0.5616 |
| 0.4163 | 17.29 | 30000 | 0.3115 | 0.5426 |
| 0.4074 | 17.58 | 30500 | 0.3079 | 0.5341 |
| 0.4121 | 17.87 | 31000 | 0.3047 | 0.5619 |
| 0.4219 | 18.16 | 31500 | 0.3085 | 0.5051 |
| 0.4049 | 18.44 | 32000 | 0.3084 | 0.5116 |
| 0.4119 | 18.73 | 32500 | 0.3071 | 0.5028 |
| 0.4129 | 19.02 | 33000 | 0.3064 | 0.5030 |
| 0.4143 | 19.31 | 33500 | 0.3040 | 0.5086 |
| 0.4013 | 19.6 | 34000 | 0.3057 | 0.5271 |
| 0.4162 | 19.88 | 34500 | 0.3052 | 0.5302 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.11.0+cu113
- Datasets 1.18.4
- Tokenizers 0.11.6
|