File size: 1,997 Bytes
cdf5fbb
 
 
a322651
cdf5fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a322651
cdf5fbb
e307062
 
 
 
 
cdf5fbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a322651
 
3e78f1e
cdf5fbb
 
 
 
 
 
 
3e78f1e
 
a322651
 
 
 
 
cdf5fbb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---

library_name: transformers
license: mit
base_model: indobenchmark/indobert-base-p1
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: results
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results

This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0452
- Accuracy: 0.9861
- F1: 0.9854
- Precision: 0.9837
- Recall: 0.9872

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05

- train_batch_size: 32

- eval_batch_size: 32

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 0.0371        | 1.0   | 739  | 0.0493          | 0.9875   | 0.9869 | 0.9851    | 0.9886 |
| 0.0407        | 2.0   | 1478 | 0.0432          | 0.9868   | 0.9862 | 0.9830    | 0.9893 |
| 0.0446        | 3.0   | 2217 | 0.0647          | 0.9841   | 0.9835 | 0.9735    | 0.9936 |
| 0.031         | 4.0   | 2956 | 0.0766          | 0.9854   | 0.9846 | 0.9892    | 0.9801 |
| 0.0072        | 5.0   | 3695 | 0.0816          | 0.9871   | 0.9865 | 0.9865    | 0.9865 |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.4.1
- Datasets 2.19.2
- Tokenizers 0.20.1