xho_finetune / README.md
ivillar's picture
End of training
4855784 verified
---
license: apache-2.0
base_model: Akashpb13/Swahili_xlsr
tags:
- generated_from_trainer
datasets:
- ml-superb-subset
metrics:
- wer
model-index:
- name: xho_finetune
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: ml-superb-subset
type: ml-superb-subset
config: xho
split: test
args: xho
metrics:
- name: Wer
type: wer
value: 53.510895883777245
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xho_finetune
This model is a fine-tuned version of [Akashpb13/Swahili_xlsr](https://huggingface.co/Akashpb13/Swahili_xlsr) on the ml-superb-subset dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5370
- Wer: 53.5109
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 9.6e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 25
- training_steps: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-------:|:----:|:---------------:|:-------:|
| 25.5184 | 0.7692 | 10 | 24.2275 | 100.0 |
| 14.5363 | 1.5385 | 20 | 9.8357 | 100.0 |
| 4.5811 | 2.3077 | 30 | 3.8367 | 100.0 |
| 3.4822 | 3.0769 | 40 | 3.3922 | 100.0 |
| 3.2732 | 3.8462 | 50 | 3.2398 | 100.0 |
| 3.1796 | 4.6154 | 60 | 3.1705 | 100.0 |
| 3.1504 | 5.3846 | 70 | 3.1419 | 100.0 |
| 3.1119 | 6.1538 | 80 | 3.1084 | 100.0 |
| 3.0789 | 6.9231 | 90 | 3.0735 | 100.0 |
| 3.0619 | 7.6923 | 100 | 3.0590 | 100.0 |
| 3.0298 | 8.4615 | 110 | 3.0247 | 100.0 |
| 2.9933 | 9.2308 | 120 | 2.9716 | 100.0 |
| 2.9079 | 10.0 | 130 | 2.8647 | 100.0 |
| 2.8414 | 10.7692 | 140 | 2.7931 | 100.0 |
| 2.6939 | 11.5385 | 150 | 2.5932 | 100.0 |
| 2.3274 | 12.3077 | 160 | 2.1000 | 99.7579 |
| 1.7068 | 13.0769 | 170 | 1.4580 | 93.4625 |
| 1.206 | 13.8462 | 180 | 1.1027 | 83.0508 |
| 0.9587 | 14.6154 | 190 | 0.9152 | 79.4189 |
| 0.7806 | 15.3846 | 200 | 0.8122 | 69.7337 |
| 0.7118 | 16.1538 | 210 | 0.7445 | 69.0073 |
| 0.6814 | 16.9231 | 220 | 0.6945 | 62.9540 |
| 0.5709 | 17.6923 | 230 | 0.6787 | 67.5545 |
| 0.5653 | 18.4615 | 240 | 0.6758 | 62.2276 |
| 0.5437 | 19.2308 | 250 | 0.6511 | 60.7748 |
| 0.5092 | 20.0 | 260 | 0.6237 | 62.7119 |
| 0.4239 | 20.7692 | 270 | 0.6000 | 61.5012 |
| 0.4355 | 21.5385 | 280 | 0.5899 | 59.8063 |
| 0.4456 | 22.3077 | 290 | 0.5960 | 59.3220 |
| 0.3986 | 23.0769 | 300 | 0.5764 | 56.6586 |
| 0.3856 | 23.8462 | 310 | 0.5801 | 55.9322 |
| 0.3607 | 24.6154 | 320 | 0.5682 | 57.6271 |
| 0.358 | 25.3846 | 330 | 0.5675 | 55.9322 |
| 0.3452 | 26.1538 | 340 | 0.5630 | 57.8692 |
| 0.3289 | 26.9231 | 350 | 0.5515 | 57.8692 |
| 0.353 | 27.6923 | 360 | 0.5621 | 57.3850 |
| 0.2907 | 28.4615 | 370 | 0.5486 | 55.2058 |
| 0.3237 | 29.2308 | 380 | 0.5445 | 54.4794 |
| 0.3202 | 30.0 | 390 | 0.5384 | 52.7845 |
| 0.2918 | 30.7692 | 400 | 0.5370 | 55.6901 |
| 0.3106 | 31.5385 | 410 | 0.5422 | 53.7530 |
| 0.3105 | 32.3077 | 420 | 0.5438 | 55.2058 |
| 0.2835 | 33.0769 | 430 | 0.5437 | 55.9322 |
| 0.2966 | 33.8462 | 440 | 0.5416 | 54.7215 |
| 0.2719 | 34.6154 | 450 | 0.5394 | 54.2373 |
| 0.2859 | 35.3846 | 460 | 0.5384 | 53.7530 |
| 0.29 | 36.1538 | 470 | 0.5379 | 53.2688 |
| 0.2879 | 36.9231 | 480 | 0.5372 | 53.5109 |
| 0.2871 | 37.6923 | 490 | 0.5370 | 53.5109 |
| 0.3019 | 38.4615 | 500 | 0.5370 | 53.5109 |
### Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1