End of training
Browse files
README.md
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
---
|
|
|
2 |
license: cc-by-4.0
|
3 |
base_model: allegro/herbert-large-cased
|
4 |
tags:
|
@@ -25,16 +26,16 @@ model-index:
|
|
25 |
metrics:
|
26 |
- name: Precision
|
27 |
type: precision
|
28 |
-
value: 0.
|
29 |
- name: Recall
|
30 |
type: recall
|
31 |
-
value: 0.
|
32 |
- name: F1
|
33 |
type: f1
|
34 |
-
value: 0.
|
35 |
- name: Accuracy
|
36 |
type: accuracy
|
37 |
-
value: 0.
|
38 |
---
|
39 |
|
40 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -44,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
44 |
|
45 |
This model is a fine-tuned version of [allegro/herbert-large-cased](https://huggingface.co/allegro/herbert-large-cased) on the universal_dependencies dataset.
|
46 |
It achieves the following results on the evaluation set:
|
47 |
-
- Loss: 0.
|
48 |
-
- Precision: 0.
|
49 |
-
- Recall: 0.
|
50 |
-
- F1: 0.
|
51 |
-
- Accuracy: 0.
|
52 |
|
53 |
## Model description
|
54 |
|
@@ -68,20 +69,32 @@ More information needed
|
|
68 |
|
69 |
The following hyperparameters were used during training:
|
70 |
- learning_rate: 5e-05
|
71 |
-
- train_batch_size:
|
72 |
- eval_batch_size: 8
|
73 |
- seed: 42
|
74 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
75 |
- lr_scheduler_type: linear
|
76 |
-
- num_epochs:
|
77 |
|
78 |
### Training results
|
79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
|
82 |
### Framework versions
|
83 |
|
84 |
-
- Transformers 4.
|
85 |
-
- Pytorch
|
86 |
-
- Datasets
|
87 |
-
- Tokenizers 0.
|
|
|
1 |
---
|
2 |
+
library_name: transformers
|
3 |
license: cc-by-4.0
|
4 |
base_model: allegro/herbert-large-cased
|
5 |
tags:
|
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
+
value: 0.91656329817706
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
+
value: 0.8825519391481612
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
+
value: 0.892780213659273
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
+
value: 0.9827837758972863
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
45 |
|
46 |
This model is a fine-tuned version of [allegro/herbert-large-cased](https://huggingface.co/allegro/herbert-large-cased) on the universal_dependencies dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.0611
|
49 |
+
- Precision: 0.9166
|
50 |
+
- Recall: 0.8826
|
51 |
+
- F1: 0.8928
|
52 |
+
- Accuracy: 0.9828
|
53 |
|
54 |
## Model description
|
55 |
|
|
|
69 |
|
70 |
The following hyperparameters were used during training:
|
71 |
- learning_rate: 5e-05
|
72 |
+
- train_batch_size: 16
|
73 |
- eval_batch_size: 8
|
74 |
- seed: 42
|
75 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
76 |
- lr_scheduler_type: linear
|
77 |
+
- num_epochs: 10
|
78 |
|
79 |
### Training results
|
80 |
|
81 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
+
| No log | 1.0 | 438 | 0.2798 | 0.8362 | 0.8222 | 0.8271 | 0.8779 |
|
84 |
+
| No log | 2.0 | 876 | 0.1613 | 0.9287 | 0.8511 | 0.8677 | 0.9240 |
|
85 |
+
| No log | 3.0 | 1314 | 0.0967 | 0.8845 | 0.8530 | 0.8562 | 0.9539 |
|
86 |
+
| No log | 4.0 | 1752 | 0.0917 | 0.9103 | 0.8461 | 0.8657 | 0.9629 |
|
87 |
+
| No log | 5.0 | 2190 | 0.0782 | 0.8965 | 0.8704 | 0.8764 | 0.9666 |
|
88 |
+
| No log | 6.0 | 2628 | 0.0766 | 0.8973 | 0.8704 | 0.8767 | 0.9691 |
|
89 |
+
| No log | 7.0 | 3066 | 0.0634 | 0.9171 | 0.8811 | 0.8923 | 0.9790 |
|
90 |
+
| No log | 8.0 | 3504 | 0.0626 | 0.9139 | 0.8909 | 0.8989 | 0.9796 |
|
91 |
+
| No log | 9.0 | 3942 | 0.0675 | 0.9131 | 0.8792 | 0.8893 | 0.9803 |
|
92 |
+
| No log | 10.0 | 4380 | 0.0611 | 0.9166 | 0.8826 | 0.8928 | 0.9828 |
|
93 |
|
94 |
|
95 |
### Framework versions
|
96 |
|
97 |
+
- Transformers 4.44.2
|
98 |
+
- Pytorch 2.4.1+cu121
|
99 |
+
- Datasets 3.0.1
|
100 |
+
- Tokenizers 0.19.1
|