herbert-large-cased-upos

This model is a fine-tuned version of allegro/herbert-large-cased on the universal_dependencies dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0611
  • Precision: 0.9166
  • Recall: 0.8826
  • F1: 0.8928
  • Accuracy: 0.9828

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 438 0.2798 0.8362 0.8222 0.8271 0.8779
No log 2.0 876 0.1613 0.9287 0.8511 0.8677 0.9240
No log 3.0 1314 0.0967 0.8845 0.8530 0.8562 0.9539
No log 4.0 1752 0.0917 0.9103 0.8461 0.8657 0.9629
No log 5.0 2190 0.0782 0.8965 0.8704 0.8764 0.9666
No log 6.0 2628 0.0766 0.8973 0.8704 0.8767 0.9691
No log 7.0 3066 0.0634 0.9171 0.8811 0.8923 0.9790
No log 8.0 3504 0.0626 0.9139 0.8909 0.8989 0.9796
No log 9.0 3942 0.0675 0.9131 0.8792 0.8893 0.9803
No log 10.0 4380 0.0611 0.9166 0.8826 0.8928 0.9828

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1
Downloads last month
2
Safetensors
Model size
354M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for izaitova/herbert-large-cased-upos

Finetuned
(7)
this model

Dataset used to train izaitova/herbert-large-cased-upos

Evaluation results