izaitova's picture
End of training
ff6f1bf verified
metadata
library_name: transformers
license: cc-by-4.0
base_model: allegro/herbert-large-cased
tags:
  - generated_from_trainer
datasets:
  - universal_dependencies
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: herbert-large-cased-upos
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: universal_dependencies
          type: universal_dependencies
          config: pl_pdb
          split: validation
          args: pl_pdb
        metrics:
          - name: Precision
            type: precision
            value: 0.91656329817706
          - name: Recall
            type: recall
            value: 0.8825519391481612
          - name: F1
            type: f1
            value: 0.892780213659273
          - name: Accuracy
            type: accuracy
            value: 0.9827837758972863

herbert-large-cased-upos

This model is a fine-tuned version of allegro/herbert-large-cased on the universal_dependencies dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0611
  • Precision: 0.9166
  • Recall: 0.8826
  • F1: 0.8928
  • Accuracy: 0.9828

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 438 0.2798 0.8362 0.8222 0.8271 0.8779
No log 2.0 876 0.1613 0.9287 0.8511 0.8677 0.9240
No log 3.0 1314 0.0967 0.8845 0.8530 0.8562 0.9539
No log 4.0 1752 0.0917 0.9103 0.8461 0.8657 0.9629
No log 5.0 2190 0.0782 0.8965 0.8704 0.8764 0.9666
No log 6.0 2628 0.0766 0.8973 0.8704 0.8767 0.9691
No log 7.0 3066 0.0634 0.9171 0.8811 0.8923 0.9790
No log 8.0 3504 0.0626 0.9139 0.8909 0.8989 0.9796
No log 9.0 3942 0.0675 0.9131 0.8792 0.8893 0.9803
No log 10.0 4380 0.0611 0.9166 0.8826 0.8928 0.9828

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.19.1