GLiREL : Generalist and Lightweight model for Zero-Shot Relation Extraction
GLiREL is a Relation Extraction model capable of classifying unseen relations given the entities within a text. This builds upon the excelent work done by Urchade Zaratiana, Nadi Tomeh, Pierre Holat, Thierry Charnois on the GLiNER library which enables efficient zero-shot Named Entity Recognition.
π GLiREL Paper β’ π GLiNER Paper β’ π€ Demo β’ π€ Available models
Installation
pip install glirel
Usage
Once you've downloaded the GLiREL library, you can import the GLiREL
class. You can then load this model using GLiREL.from_pretrained
and predict entities with predict_relations
.
from glirel import GLiREL
import spacy
model = GLiREL.from_pretrained("jackboyla/glirel_beta")
nlp = spacy.load('en_core_web_sm')
text = 'Derren Nesbitt had a history of being cast in "Doctor Who", having played villainous warlord Tegana in the 1964 First Doctor serial "Marco Polo".'
doc = nlp(text)
tokens = [token.text for token in doc]
labels = ['country of origin', 'licensed to broadcast to', 'father', 'followed by', 'characters']
ner = [[26, 27, 'PERSON', 'Marco Polo'], [22, 23, 'Q2989412', 'First Doctor']] # 'type' is not used -- it can be any string!
relations = model.predict_relations(tokens, labels, threshold=0.0, ner=ner, top_k=1)
print('Number of relations:', len(relations))
sorted_data_desc = sorted(relations, key=lambda x: x['score'], reverse=True)
print("\nDescending Order by Score:")
for item in sorted_data_desc:
print(f"{item['head_text']} --> {item['label']} --> {item['tail_text']} | score: {item['score']}")
Expected Output
Number of relations: 2
Descending Order by Score:
{'head_pos': [26, 28], 'tail_pos': [22, 24], 'head_text': ['Marco', 'Polo'], 'tail_text': ['First', 'Doctor'], 'label': 'characters', 'score': 0.9923334121704102}
{'head_pos': [22, 24], 'tail_pos': [26, 28], 'head_text': ['First', 'Doctor'], 'tail_text': ['Marco', 'Polo'], 'label': 'characters', 'score': 0.9915636777877808}
Constrain labels
In practice, we usually want to define the types of entities that can exist as a head and/or tail of a relationship. This is already implemented in GLiREL:
labels = {"glirel_labels": {
'co-founder': {"allowed_head": ["PERSON"], "allowed_tail": ["ORG"]},
'no relation': {}, # head and tail can be any entity type
'country of origin': {"allowed_head": ["PERSON", "ORG"], "allowed_tail": ["LOC", "GPE"]},
'parent': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]},
'located in or next to body of water': {"allowed_head": ["LOC", "GPE", "FAC"], "allowed_tail": ["LOC", "GPE"]},
'spouse': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]},
'child': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]},
'founder': {"allowed_head": ["PERSON"], "allowed_tail": ["ORG"]},
'founded on date': {"allowed_head": ["ORG"], "allowed_tail": ["DATE"]},
'headquartered in': {"allowed_head": ["ORG"], "allowed_tail": ["LOC", "GPE", "FAC"]},
'acquired by': {"allowed_head": ["ORG"], "allowed_tail": ["ORG", "PERSON"]},
'subsidiary of': {"allowed_head": ["ORG"], "allowed_tail": ["ORG", "PERSON"]},
}
}
Usage with spaCy
You can also load GliREL into a regular spaCy NLP pipeline. Here's an example using an English pipeline.
import spacy
import glirel
# Load a blank spaCy model or an existing one
nlp = spacy.load('en_core_web_sm')
# Add the GLiREL component to the pipeline
nlp.add_pipe("glirel", after="ner")
# Now you can use the pipeline with the GLiREL component
text = "Apple Inc. was founded by Steve Jobs, Steve Wozniak, and Ronald Wayne in April 1976. The company is headquartered in Cupertino, California."
labels = {"glirel_labels": {
'co-founder': {"allowed_head": ["PERSON"], "allowed_tail": ["ORG"]},
'country of origin': {"allowed_head": ["PERSON", "ORG"], "allowed_tail": ["LOC", "GPE"]},
'licensed to broadcast to': {"allowed_head": ["ORG"]},
'no relation': {},
'parent': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]},
'followed by': {"allowed_head": ["PERSON", "ORG"], "allowed_tail": ["PERSON", "ORG"]},
'located in or next to body of water': {"allowed_head": ["LOC", "GPE", "FAC"], "allowed_tail": ["LOC", "GPE"]},
'spouse': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]},
'child': {"allowed_head": ["PERSON"], "allowed_tail": ["PERSON"]},
'founder': {"allowed_head": ["PERSON"], "allowed_tail": ["ORG"]},
'headquartered in': {"allowed_head": ["ORG"], "allowed_tail": ["LOC", "GPE", "FAC"]},
'acquired by': {"allowed_head": ["ORG"], "allowed_tail": ["ORG", "PERSON"]},
'subsidiary of': {"allowed_head": ["ORG"], "allowed_tail": ["ORG", "PERSON"]},
}
}
# Add the labels to the pipeline at inference time
docs = list( nlp.pipe([(text, labels)], as_tuples=True) )
relations = docs[0][0]._.relations
print('Number of relations:', len(relations))
sorted_data_desc = sorted(relations, key=lambda x: x['score'], reverse=True)
print("\nDescending Order by Score:")
for item in sorted_data_desc:
print(f"{item['head_text']} --> {item['label']} --> {item['tail_text']} | score: {item['score']}")
Expected Output
Number of relations: 5
Descending Order by Score:
['Apple', 'Inc.'] --> headquartered in --> ['California'] | score: 0.9854260683059692
['Apple', 'Inc.'] --> headquartered in --> ['Cupertino'] | score: 0.9569844603538513
['Steve', 'Wozniak'] --> co-founder --> ['Apple', 'Inc.'] | score: 0.09025496244430542
['Steve', 'Jobs'] --> co-founder --> ['Apple', 'Inc.'] | score: 0.08805803954601288
['Ronald', 'Wayne'] --> co-founder --> ['Apple', 'Inc.'] | score: 0.07996643334627151
Example training data
NOTE that the entity indices are inclusive i.e "Binsey"
is [7, 7]
. This differs from spaCy where the end index is exclusive (in this case spaCy would set the indices to [7, 8]
)
JSONL file:
{
"ner": [
[7, 7, "Q4914513", "Binsey"],
[11, 12, "Q19686", "River Thames"]
],
"relations": [
{
"head": {"mention": "Binsey", "position": [7, 7], "type": "LOC"}, # 'type' is not used -- it can be any string!
"tail": {"mention": "River Thames", "position": [11, 12], "type": "Q19686"},
"relation_text": "located in or next to body of water"
}
],
"tokenized_text": ["The", "race", "took", "place", "between", "Godstow", "and", "Binsey", "along", "the", "Upper", "River", "Thames", "."]
},
{
"ner": [
[9, 10, "Q4386693", "Legislative Assembly"],
[1, 3, "Q1848835", "Parliament of Victoria"]
],
"relations": [
{
"head": {"mention": "Legislative Assembly", "position": [9, 10], "type": "Q4386693"},
"tail": {"mention": "Parliament of Victoria", "position": [1, 3], "type": "Q1848835"},
"relation_text": "part of"
}
],
"tokenized_text": ["The", "Parliament", "of", "Victoria", "consists", "of", "the", "lower", "house", "Legislative", "Assembly", ",", "the", "upper", "house", "Legislative", "Council", "and", "the", "Queen", "of", "Australia", "."]
}
License
GLiREL by Jack Boylan is licensed under CC BY-NC-SA 4.0.
Citation
If you use code or ideas from this project, please cite:
@misc{boylan2025glirelgeneralistmodel,
title={GLiREL -- Generalist Model for Zero-Shot Relation Extraction},
author={Jack Boylan and Chris Hokamp and Demian Gholipour Ghalandari},
year={2025},
eprint={2501.03172},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2501.03172},
}