File size: 14,099 Bytes
73d385f f231447 73d385f 6d56da9 73d385f 6d56da9 73d385f 6d56da9 73d385f 6d56da9 73d385f 6d56da9 73d385f 6d56da9 73d385f 6d56da9 73d385f 6d56da9 73d385f 6d56da9 73d385f 6d56da9 73d385f 6d56da9 73d385f 6d56da9 73d385f 6d56da9 73d385f 6d56da9 73d385f 6d56da9 73d385f 6d56da9 73d385f 6d56da9 73d385f 6d56da9 73d385f 6d56da9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
import torch
from PIL import Image
from conversation import conv_templates
from builder import load_pretrained_model
from functools import partial
from typing import Optional, Callable
import ast
import math
import numpy as np
DEFAULT_REGION_FEA_TOKEN = "<region_fea>"
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
VOCAB_IMAGE_W = 1000 # 224
VOCAB_IMAGE_H = 1000 # 224
IMAGE_TOKEN_INDEX = -200
# define the task categories
box_in_tasks = ['widgetcaptions', 'taperception', 'ocr', 'icon_recognition', 'widget_classification', 'example_0']
box_out_tasks = ['widget_listing', 'find_text', 'find_icons', 'find_widget', 'conversation_interaction']
no_box_tasks = ['screen2words', 'detailed_description', 'conversation_perception', 'gpt4']
def get_bbox_coor(box, ratio_w, ratio_h):
return box[0] * ratio_w, box[1] * ratio_h, box[2] * ratio_w, box[3] * ratio_h
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
if '<image>' in prompt:
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
input_ids = []
for i, chunk in enumerate(prompt_chunks):
input_ids.extend(chunk)
if i < len(prompt_chunks) - 1:
input_ids.append(image_token_index)
else:
input_ids = tokenizer(prompt).input_ids
# if return_tensors == 'pt':
# import torch
# input_ids = torch.tensor(input_ids).unsqueeze(0)
return input_ids
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def select_best_resolution(original_size, possible_resolutions):
"""
Selects the best resolution from a list of possible resolutions based on the original size.
Args:
original_size (tuple): The original size of the image in the format (width, height).
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
Returns:
tuple: The best fit resolution in the format (width, height).
"""
original_width, original_height = original_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float('inf')
for width, height in possible_resolutions:
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (width, height)
return best_fit
def divide_to_patches(image, patch_size):
"""
Divides an image into patches of a specified size.
Args:
image (PIL.Image.Image): The input image.
patch_size (int): The size of each patch.
Returns:
list: A list of PIL.Image.Image objects representing the patches.
"""
patches = []
width, height = image.size
for i in range(0, height, patch_size):
for j in range(0, width, patch_size):
box = (j, i, j + patch_size, i + patch_size)
patch = image.crop(box)
patches.append(patch)
return patches
def resize_and_pad_image(image, target_resolution, is_pad=False):
"""
Resize and pad an image to a target resolution while maintaining aspect ratio.
Args:
image (PIL.Image.Image): The input image.
target_resolution (tuple): The target resolution (width, height) of the image.
Returns:
PIL.Image.Image: The resized and padded image.
"""
original_width, original_height = image.size
target_width, target_height = target_resolution
if is_pad:
scale_w = target_width / original_width
scale_h = target_height / original_height
if scale_w < scale_h:
new_width = target_width
new_height = min(math.ceil(original_height * scale_w), target_height)
else:
new_height = target_height
new_width = min(math.ceil(original_width * scale_h), target_width)
# Resize the image
resized_image = image.resize((new_width, new_height))
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
paste_x = (target_width - new_width) // 2
paste_y = (target_height - new_height) // 2
new_image.paste(resized_image, (paste_x, paste_y))
else:
new_image = image.resize((target_width, target_height))
return new_image
def process_anyres_image(image, processor, grid_pinpoints, image_process_func: Optional[Callable] = None):
"""
Process an image with variable resolutions.
Args:
image (PIL.Image.Image): The input image to be processed.
processor: The image processor object.
grid_pinpoints (str): A string representation of a list of possible resolutions.
Returns:
torch.Tensor: A tensor containing the processed image patches.
"""
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
best_resolution = select_best_resolution(image.size, possible_resolutions)
# FIXME: not sure if do_pad or undo_pad may affect the referring side
image_padded = resize_and_pad_image(image, best_resolution, is_pad=False)
patches = divide_to_patches(image_padded, processor.crop_size['height'])
if image_process_func:
resized_image_h, resized_image_w = image_process_func.keywords['size']
image_original_resize = image.resize((resized_image_w, resized_image_h))
image_patches = [image_original_resize] + patches
image_patches = [image_process_func(image_patch)['pixel_values'][0]
for image_patch in image_patches]
else:
image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
image_patches = [image_original_resize] + patches
image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
for image_patch in image_patches]
return torch.stack(image_patches, dim=0)
def process_images(images, image_processor, model_cfg, image_process_func: Optional[Callable] = None):
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
new_images = []
if image_aspect_ratio == 'pad':
for image in images:
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
new_images.append(image)
elif image_aspect_ratio == "anyres":
# image_processor(images, return_tensors='pt', do_resize=True, do_center_crop=False, size=[image_h, image_w])['pixel_values']
for image in images:
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints, image_process_func=image_process_func)
new_images.append(image)
else:
return image_processor(images, return_tensors='pt')['pixel_values']
if all(x.shape == new_images[0].shape for x in new_images):
new_images = torch.stack(new_images, dim=0)
return new_images
# function to generate the mask
def generate_mask_for_feature(coor, raw_w, raw_h, mask=None):
"""
Generates a region mask based on provided coordinates.
Handles both point and box input.
"""
if mask is not None:
assert mask.shape[0] == raw_w and mask.shape[1] == raw_h
coor_mask = np.zeros((raw_w, raw_h))
# if it's a point (2 coordinates)
if len(coor) == 2:
span = 5 # Define the span for the point
x_min = max(0, coor[0] - span)
x_max = min(raw_w, coor[0] + span + 1)
y_min = max(0, coor[1] - span)
y_max = min(raw_h, coor[1] + span + 1)
coor_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1
assert (coor_mask == 1).any(), f"coor: {coor}, raw_w: {raw_w}, raw_h: {raw_h}"
# if it's a box (4 coordinates)
elif len(coor) == 4:
coor_mask[coor[0]:coor[2]+1, coor[1]:coor[3]+1] = 1
if mask is not None:
coor_mask = coor_mask * mask
# convert to torch tensor and ensure it contains non-zero values
coor_mask = torch.from_numpy(coor_mask)
assert len(coor_mask.nonzero()) != 0, "Generated mask is empty :("
return coor_mask
def infer_single_prompt(image_path, prompt, model_path, region=None, model_name="ferret_gemma", conv_mode="ferret_gemma_instruct", add_region_feature=False):
img = Image.open(image_path).convert('RGB')
# this loads the model, image processor and tokenizer
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
# define the image size required by clip
image_size = {"height": 336, "width": 336}
if "<image>" in prompt:
prompt = prompt.split('\n')[1]
if model.config.mm_use_im_start_end:
prompt = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + prompt
else:
prompt = DEFAULT_IMAGE_TOKEN + '\n' + prompt
# generate the prompt per template requirement
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], prompt)
conv.append_message(conv.roles[1], None)
prompt_input = conv.get_prompt()
input_ids = tokenizer(prompt_input, return_tensors='pt')['input_ids'].cuda()
# raw_w, raw_h = img.size # check if shouldnt be width and height
raw_w = image_size["width"]
raw_h = image_size["height"]
if model.config.image_aspect_ratio == "square_nocrop":
image_tensor = image_processor.preprocess(img, return_tensors='pt', do_resize=True,
do_center_crop=False, size=[raw_h, raw_w])['pixel_values'][0]
elif model.config.image_aspect_ratio == "anyres":
image_process_func = partial(image_processor.preprocess, return_tensors='pt', do_resize=True, do_center_crop=False, size=[raw_h, raw_h])
image_tensor = process_images([img], image_processor, model.config, image_process_func=image_process_func)[0]
else:
image_tensor = process_images([img], image_processor, model.config)[0]
images = image_tensor.unsqueeze(0).to(torch.float16).cuda()
# region mask logic (if region is provided)
region_masks = None
if add_region_feature and region is not None:
# box_in is true
raw_w, raw_h = img.size
ratio_w = VOCAB_IMAGE_W * 1.0 / raw_w
ratio_h = VOCAB_IMAGE_H * 1.0 / raw_h
# preprocess the region
box_x1, box_y1, box_x2, box_y2 = region
box_x1_textvocab, box_y1_textvocab, box_x2_textvocab, box_y2_textvocab = get_bbox_coor(box=region, ratio_h=ratio_h, ratio_w=ratio_w)
region_coordinate_raw = [box_x1, box_y1, box_x2, box_y2]
region_masks = generate_mask_for_feature(region_coordinate_raw, raw_w, raw_h).unsqueeze(0).cuda().half()
region_masks = [[region_mask_i.cuda().half() for region_mask_i in region_masks]]
prompt_input = prompt_input.replace("<bbox_location0>", f"[{box_x1_textvocab}, {box_y1_textvocab}, {box_x2_textvocab}, {box_y2_textvocab}] {DEFAULT_REGION_FEA_TOKEN}")
# tokenize prompt
# input_ids = tokenizer(prompt_input, return_tensors='pt')['input_ids'].cuda()
# generate model output
with torch.inference_mode():
# Use region_masks in model's forward call
model.orig_forward = model.forward
model.forward = partial(
model.orig_forward,
region_masks=region_masks
)
# explcit add of attention mask
output_ids = model.generate(
input_ids,
images=images,
max_new_tokens=1024,
num_beams=1,
region_masks=region_masks, # pass the region mask to the model
image_sizes=[img.size]
)
model.forward = model.orig_forward
# we decode the output
output_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
return output_text.strip()
# We also define a task-specific inference function
def infer_ui_task(image_path, prompt, model_path, task, region=None, add_region_feature=False):
# region = torch.tensor(region).cuda()
"""
Handles task types: box_in_tasks, box_out_tasks, no_box_tasks.
"""
if region is not None:
add_region_feature=True
if task in box_in_tasks and region is None:
raise ValueError(f"Task {task} requires a bounding box region.")
if task in box_in_tasks:
print(f"Processing {task} with bounding box region.")
return infer_single_prompt(image_path, prompt, model_path, region, add_region_feature=add_region_feature)
elif task in box_out_tasks:
print(f"Processing {task} without bounding box region.")
return infer_single_prompt(image_path, prompt, model_path)
elif task in no_box_tasks:
print(f"Processing {task} without image or bounding box.")
return infer_single_prompt(image_path, prompt, model_path)
else:
raise ValueError(f"Unknown task type: {task}") |