Ferret-UI-Gemma2b / inference.py
jadechoghari's picture
Update inference.py
f231447 verified
raw
history blame
14.1 kB
import torch
from PIL import Image
from conversation import conv_templates
from builder import load_pretrained_model
from functools import partial
from typing import Optional, Callable
import ast
import math
import numpy as np
DEFAULT_REGION_FEA_TOKEN = "<region_fea>"
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
VOCAB_IMAGE_W = 1000 # 224
VOCAB_IMAGE_H = 1000 # 224
IMAGE_TOKEN_INDEX = -200
# define the task categories
box_in_tasks = ['widgetcaptions', 'taperception', 'ocr', 'icon_recognition', 'widget_classification', 'example_0']
box_out_tasks = ['widget_listing', 'find_text', 'find_icons', 'find_widget', 'conversation_interaction']
no_box_tasks = ['screen2words', 'detailed_description', 'conversation_perception', 'gpt4']
def get_bbox_coor(box, ratio_w, ratio_h):
return box[0] * ratio_w, box[1] * ratio_h, box[2] * ratio_w, box[3] * ratio_h
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
if '<image>' in prompt:
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
input_ids = []
for i, chunk in enumerate(prompt_chunks):
input_ids.extend(chunk)
if i < len(prompt_chunks) - 1:
input_ids.append(image_token_index)
else:
input_ids = tokenizer(prompt).input_ids
# if return_tensors == 'pt':
# import torch
# input_ids = torch.tensor(input_ids).unsqueeze(0)
return input_ids
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def select_best_resolution(original_size, possible_resolutions):
"""
Selects the best resolution from a list of possible resolutions based on the original size.
Args:
original_size (tuple): The original size of the image in the format (width, height).
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
Returns:
tuple: The best fit resolution in the format (width, height).
"""
original_width, original_height = original_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float('inf')
for width, height in possible_resolutions:
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (width, height)
return best_fit
def divide_to_patches(image, patch_size):
"""
Divides an image into patches of a specified size.
Args:
image (PIL.Image.Image): The input image.
patch_size (int): The size of each patch.
Returns:
list: A list of PIL.Image.Image objects representing the patches.
"""
patches = []
width, height = image.size
for i in range(0, height, patch_size):
for j in range(0, width, patch_size):
box = (j, i, j + patch_size, i + patch_size)
patch = image.crop(box)
patches.append(patch)
return patches
def resize_and_pad_image(image, target_resolution, is_pad=False):
"""
Resize and pad an image to a target resolution while maintaining aspect ratio.
Args:
image (PIL.Image.Image): The input image.
target_resolution (tuple): The target resolution (width, height) of the image.
Returns:
PIL.Image.Image: The resized and padded image.
"""
original_width, original_height = image.size
target_width, target_height = target_resolution
if is_pad:
scale_w = target_width / original_width
scale_h = target_height / original_height
if scale_w < scale_h:
new_width = target_width
new_height = min(math.ceil(original_height * scale_w), target_height)
else:
new_height = target_height
new_width = min(math.ceil(original_width * scale_h), target_width)
# Resize the image
resized_image = image.resize((new_width, new_height))
new_image = Image.new('RGB', (target_width, target_height), (0, 0, 0))
paste_x = (target_width - new_width) // 2
paste_y = (target_height - new_height) // 2
new_image.paste(resized_image, (paste_x, paste_y))
else:
new_image = image.resize((target_width, target_height))
return new_image
def process_anyres_image(image, processor, grid_pinpoints, image_process_func: Optional[Callable] = None):
"""
Process an image with variable resolutions.
Args:
image (PIL.Image.Image): The input image to be processed.
processor: The image processor object.
grid_pinpoints (str): A string representation of a list of possible resolutions.
Returns:
torch.Tensor: A tensor containing the processed image patches.
"""
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
best_resolution = select_best_resolution(image.size, possible_resolutions)
# FIXME: not sure if do_pad or undo_pad may affect the referring side
image_padded = resize_and_pad_image(image, best_resolution, is_pad=False)
patches = divide_to_patches(image_padded, processor.crop_size['height'])
if image_process_func:
resized_image_h, resized_image_w = image_process_func.keywords['size']
image_original_resize = image.resize((resized_image_w, resized_image_h))
image_patches = [image_original_resize] + patches
image_patches = [image_process_func(image_patch)['pixel_values'][0]
for image_patch in image_patches]
else:
image_original_resize = image.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
image_patches = [image_original_resize] + patches
image_patches = [processor.preprocess(image_patch, return_tensors='pt')['pixel_values'][0]
for image_patch in image_patches]
return torch.stack(image_patches, dim=0)
def process_images(images, image_processor, model_cfg, image_process_func: Optional[Callable] = None):
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
new_images = []
if image_aspect_ratio == 'pad':
for image in images:
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
new_images.append(image)
elif image_aspect_ratio == "anyres":
# image_processor(images, return_tensors='pt', do_resize=True, do_center_crop=False, size=[image_h, image_w])['pixel_values']
for image in images:
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints, image_process_func=image_process_func)
new_images.append(image)
else:
return image_processor(images, return_tensors='pt')['pixel_values']
if all(x.shape == new_images[0].shape for x in new_images):
new_images = torch.stack(new_images, dim=0)
return new_images
# function to generate the mask
def generate_mask_for_feature(coor, raw_w, raw_h, mask=None):
"""
Generates a region mask based on provided coordinates.
Handles both point and box input.
"""
if mask is not None:
assert mask.shape[0] == raw_w and mask.shape[1] == raw_h
coor_mask = np.zeros((raw_w, raw_h))
# if it's a point (2 coordinates)
if len(coor) == 2:
span = 5 # Define the span for the point
x_min = max(0, coor[0] - span)
x_max = min(raw_w, coor[0] + span + 1)
y_min = max(0, coor[1] - span)
y_max = min(raw_h, coor[1] + span + 1)
coor_mask[int(x_min):int(x_max), int(y_min):int(y_max)] = 1
assert (coor_mask == 1).any(), f"coor: {coor}, raw_w: {raw_w}, raw_h: {raw_h}"
# if it's a box (4 coordinates)
elif len(coor) == 4:
coor_mask[coor[0]:coor[2]+1, coor[1]:coor[3]+1] = 1
if mask is not None:
coor_mask = coor_mask * mask
# convert to torch tensor and ensure it contains non-zero values
coor_mask = torch.from_numpy(coor_mask)
assert len(coor_mask.nonzero()) != 0, "Generated mask is empty :("
return coor_mask
def infer_single_prompt(image_path, prompt, model_path, region=None, model_name="ferret_gemma", conv_mode="ferret_gemma_instruct", add_region_feature=False):
img = Image.open(image_path).convert('RGB')
# this loads the model, image processor and tokenizer
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name)
# define the image size required by clip
image_size = {"height": 336, "width": 336}
if "<image>" in prompt:
prompt = prompt.split('\n')[1]
if model.config.mm_use_im_start_end:
prompt = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + prompt
else:
prompt = DEFAULT_IMAGE_TOKEN + '\n' + prompt
# generate the prompt per template requirement
conv = conv_templates[conv_mode].copy()
conv.append_message(conv.roles[0], prompt)
conv.append_message(conv.roles[1], None)
prompt_input = conv.get_prompt()
input_ids = tokenizer(prompt_input, return_tensors='pt')['input_ids'].cuda()
# raw_w, raw_h = img.size # check if shouldnt be width and height
raw_w = image_size["width"]
raw_h = image_size["height"]
if model.config.image_aspect_ratio == "square_nocrop":
image_tensor = image_processor.preprocess(img, return_tensors='pt', do_resize=True,
do_center_crop=False, size=[raw_h, raw_w])['pixel_values'][0]
elif model.config.image_aspect_ratio == "anyres":
image_process_func = partial(image_processor.preprocess, return_tensors='pt', do_resize=True, do_center_crop=False, size=[raw_h, raw_h])
image_tensor = process_images([img], image_processor, model.config, image_process_func=image_process_func)[0]
else:
image_tensor = process_images([img], image_processor, model.config)[0]
images = image_tensor.unsqueeze(0).to(torch.float16).cuda()
# region mask logic (if region is provided)
region_masks = None
if add_region_feature and region is not None:
# box_in is true
raw_w, raw_h = img.size
ratio_w = VOCAB_IMAGE_W * 1.0 / raw_w
ratio_h = VOCAB_IMAGE_H * 1.0 / raw_h
# preprocess the region
box_x1, box_y1, box_x2, box_y2 = region
box_x1_textvocab, box_y1_textvocab, box_x2_textvocab, box_y2_textvocab = get_bbox_coor(box=region, ratio_h=ratio_h, ratio_w=ratio_w)
region_coordinate_raw = [box_x1, box_y1, box_x2, box_y2]
region_masks = generate_mask_for_feature(region_coordinate_raw, raw_w, raw_h).unsqueeze(0).cuda().half()
region_masks = [[region_mask_i.cuda().half() for region_mask_i in region_masks]]
prompt_input = prompt_input.replace("<bbox_location0>", f"[{box_x1_textvocab}, {box_y1_textvocab}, {box_x2_textvocab}, {box_y2_textvocab}] {DEFAULT_REGION_FEA_TOKEN}")
# tokenize prompt
# input_ids = tokenizer(prompt_input, return_tensors='pt')['input_ids'].cuda()
# generate model output
with torch.inference_mode():
# Use region_masks in model's forward call
model.orig_forward = model.forward
model.forward = partial(
model.orig_forward,
region_masks=region_masks
)
# explcit add of attention mask
output_ids = model.generate(
input_ids,
images=images,
max_new_tokens=1024,
num_beams=1,
region_masks=region_masks, # pass the region mask to the model
image_sizes=[img.size]
)
model.forward = model.orig_forward
# we decode the output
output_text = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
return output_text.strip()
# We also define a task-specific inference function
def infer_ui_task(image_path, prompt, model_path, task, region=None, add_region_feature=False):
# region = torch.tensor(region).cuda()
"""
Handles task types: box_in_tasks, box_out_tasks, no_box_tasks.
"""
if region is not None:
add_region_feature=True
if task in box_in_tasks and region is None:
raise ValueError(f"Task {task} requires a bounding box region.")
if task in box_in_tasks:
print(f"Processing {task} with bounding box region.")
return infer_single_prompt(image_path, prompt, model_path, region, add_region_feature=add_region_feature)
elif task in box_out_tasks:
print(f"Processing {task} without bounding box region.")
return infer_single_prompt(image_path, prompt, model_path)
elif task in no_box_tasks:
print(f"Processing {task} without image or bounding box.")
return infer_single_prompt(image_path, prompt, model_path)
else:
raise ValueError(f"Unknown task type: {task}")