RT-DETRv2 / README.md
jadechoghari's picture
Update README.md
9d41912 verified
|
raw
history blame
1.57 kB
metadata
library_name: transformers

This is the HF transformers implementation for RT-DETRv2

Model: RT-DETRv2-S RT-DETRv2, an improved Real-Time DEtection TRansformer (RT-DETR). RT-DETRv2 builds upon the previous state-of-the-art real-time detector, RT-DETR, and opens up a set of bag-of-freebies for flexibility and practicality, as well as optimizing the training strategy to achieve enhanced performance. To improve the flexibility, we suggest setting a distinct number of sampling points for features at different scales in the deformable attention to achieve selective multi-scale feature extraction by the decoder.

Usage:

import torch
import requests

from PIL import Image
from transformers import RTDetrForObjectDetection, RTDetrImageProcessor

url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)

image_processor = RTDetrImageProcessor.from_pretrained("jadechoghari/RT-DETRv2")
model = RTDetrForObjectDetection.from_pretrained("jadechoghari/RT-DETRv2")

inputs = image_processor(images=image, return_tensors="pt")

with torch.no_grad():
    outputs = model(**inputs)

results = image_processor.post_process_object_detection(outputs, target_sizes=torch.tensor([image.size[::-1]]), threshold=0.3)

for result in results:
    for score, label_id, box in zip(result["scores"], result["labels"], result["boxes"]):
        score, label = score.item(), label_id.item()
        box = [round(i, 2) for i in box.tolist()]
        print(f"{model.config.id2label[label]}: {score:.2f} {box}")