File size: 31,891 Bytes
a051d95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
import torch
from typing import Tuple, Callable


def do_nothing(x: torch.Tensor, mode: str = None):
    return x


def mps_gather_workaround(input, dim, index):
    if input.shape[-1] == 1:
        return torch.gather(
            input.unsqueeze(-1),
            dim - 1 if dim < 0 else dim,
            index.unsqueeze(-1)
        ).squeeze(-1)
    else:
        return torch.gather(input, dim, index)

# For Local Token Merging
def bipartite_soft_matching_randframe(metric: torch.Tensor, 
                                      F: int, ratio: float, unm_pre: int, generator: torch.Generator,
                                      target_stride: int = 4, align_batch: bool = False,
                                      merge_mode: str = "replace") -> Tuple[Callable, Callable, dict]:
    """
    Partitions the multi-frame tokens into src and dst and merges ratio of src tokens from src to dst.
    Dst tokens are partitioned by choosing one random frame.

    Args:
        - metric [B, N, C]: metric to use for similarity.
        - F: frame number.
        - ratio: ratio of src tokens to be removed (by merging).
        - unm_pre: number of src tokens not merged at previous ToMe. Pre-sequence: [unm_pre|F_0|F_1|...]
        - generator: random number generator
        - target_stride: stride of target frame.
        - align_batch: whether to align similarity matching maps of samples in the batch. True when using PnP.
        - merge_mode: how to merge tokens. "mean": tokens -> Mean(src_token, dst_token); "replace": tokens -> dst_token.

    Returns:
        Merge and unmerge operation according to the matching result. Return a dict including other values.
    """
    B, N, _ = metric.shape
    # Compute pre-frame token number. N = unm_pre + tnum * F.
    tnum = (N - unm_pre) // F

    if ratio <= 0:
        return do_nothing, do_nothing, {"unm_num": tnum}

    gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather

    with torch.no_grad():
        # Prepare idx buffer. Ignore previous unmerged tokens.
        idx_buffer = torch.arange(
            N - unm_pre, device=metric.device, dtype=torch.int64)

        # Select the random target frame.
        target_stride = min(target_stride, F)
        randf = torch.randint(0, target_stride, torch.Size(
            [1]), generator=generator, device=generator.device)
        dst_select = ((torch.div(idx_buffer, tnum, rounding_mode='floor')) %
                      target_stride == randf).to(torch.bool)

        # a_idx: src index. b_idx: dst index
        a_idx = idx_buffer[None, ~dst_select, None] + unm_pre
        b_idx = idx_buffer[None, dst_select, None] + unm_pre

        # Add unmerged tokens to dst.
        unm_buffer = torch.arange(unm_pre, device=metric.device, dtype=torch.int64)[
            None, :, None]
        b_idx = torch.cat([b_idx, unm_buffer], dim=1)

        # We're finished with these
        del idx_buffer, unm_buffer

        num_dst = b_idx.shape[1]

        def split(x):
            # Split src, dst tokens
            b, n, c = x.shape
            src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
            dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
            return src, dst

        # Cosine similarity between src and dst tokens
        metric = metric / metric.norm(dim=-1, keepdim=True)
        a, b = split(metric)

        scores = a @ b.transpose(-1, -2)

        # Can't reduce more than the # tokens in src
        r = min(a.shape[1], int(a.shape[1] * ratio))


        if align_batch:
            # Cat scores of all samples in the batch. When using PnP, samples are (src, neg, pos).
            # Find the most similar greedily among all samples.
            scores = torch.cat([*scores], dim=-1)
            node_max, node_idx = scores.max(dim=-1)
            edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]

            unm_idx = edge_idx[..., r:, :]  # Unmerged Tokens
            src_idx = edge_idx[..., :r, :]  # Merged Tokens
            dst_idx = gather(node_idx[..., None],
                             dim=-2, index=src_idx) % num_dst # Map index to (0, num_dst - 1)
            
            # Use the same matching result for all samples
            unm_idx = unm_idx.expand(B, -1, -1)
            src_idx = src_idx.expand(B, -1, -1)
            dst_idx = dst_idx.expand(B, -1, -1)
        else:

            # Find the most similar greedily
            node_max, node_idx = scores.max(dim=-1)
            edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]

            unm_idx = edge_idx[..., r:, :]  # Unmerged Tokens
            src_idx = edge_idx[..., :r, :]  # Merged Tokens
            dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)

    def merge(x: torch.Tensor, mode=None) -> torch.Tensor:
        # Merge tokens according to matching result.
        src, dst = split(x)
        n, t1, c = src.shape
        u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx

        unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
        mode = mode if mode is not None else merge_mode
        if mode != "replace":
            src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
            # In other mode such as mean, combine matched src and dst tokens.
            dst = dst.scatter_reduce(-2, d_idx.expand(-1, -1, c),
                                     src, reduce=mode, include_self=True)
        # In replace mode, just cat unmerged tokens and dst tokens. Ignore src tokens.
        return torch.cat([unm, dst], dim=1)

    def unmerge(x: torch.Tensor, **kwarg) -> torch.Tensor:
        # Unmerge tokens to original size according to matching result.
        unm_len = unm_idx.shape[1]
        unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
        b, _, c = unm.shape
        u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
        # Restored src tokens take value from dst tokens
        src = gather(dst, dim=-2, index=d_idx.expand(-1, -1, c))

        # Combine back to the original shape
        out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
        # Scatter dst tokens
        out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
        # Scatter unmerged tokens
        out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
                     dim=1, index=u_idx).expand(-1, -1, c), src=unm)
        # Scatter src tokens
        out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
                     dim=1, index=s_idx).expand(-1, -1, c), src=src)

        return out

    # Return number of tokens not merged.
    ret_dict = {"unm_num": unm_idx.shape[1] if unm_idx.shape[1] is not None else 0}
    return merge, unmerge, ret_dict


def bipartite_soft_matching_random2d_hier(metric: torch.Tensor, frame_num: int, ratio: float, unm_pre: int, generator: torch.Generator, target_stride: int = 4, adhere_src: bool = False,  merge_mode: str = "replace", scores = None, coord = None, rec_field = 2) -> Tuple[Callable, Callable]:
    """
    Partitions the tokens into src and dst and merges r tokens from src to dst.
    Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.

    Args:
     - metric [B, N, C]: metric to use for similarity
     - w: image width in tokens
     - h: image height in tokens
     - sx: stride in the x dimension for dst, must divide w
     - sy: stride in the y dimension for dst, must divide h
     - r: number of tokens to remove (by merging)
     - no_rand: if true, disable randomness (use top left corner only)
     - rand_seed: if no_rand is false, and if not None, sets random seed.
    """
    B, N, _ = metric.shape
    F = frame_num
    nf = (N - unm_pre) // F

    if ratio <= 0:
        return do_nothing, do_nothing

    gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
    
    with torch.no_grad():

        
        # The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
        idx_buffer = torch.arange(N - unm_pre, device=metric.device, dtype=torch.int64)


        # randn = torch.randint(0, F, torch.Size([nf])).to(idx_buffer) * nf
        # dst_indexes = torch.arange(nf, device=metric.device, dtype=torch.int64) + randn
        # dst_select = torch.zeros_like(idx_buffer).to(torch.bool)
        # dst_select[dst_indexes] = 1
        max_f = min(target_stride, F)
        randn = torch.randint(0, max_f, torch.Size([1]), generator=generator, device = generator.device)
        # randn = 0
        dst_select = ((torch.div(idx_buffer, nf, rounding_mode='floor')) % max_f == randn).to(torch.bool)
        # dst_select = ((idx_buffer // nf) == 0).to(torch.bool)
        a_idx = idx_buffer[None, ~dst_select, None] + unm_pre
        b_idx = idx_buffer[None, dst_select, None] + unm_pre

        unm_buffer = torch.arange(unm_pre, device=metric.device, dtype=torch.int64)[None,:,None]
        b_idx = torch.cat([b_idx, unm_buffer], dim = 1)

        # We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices

        # We're finished with these
        del idx_buffer, unm_buffer

        num_dst = b_idx.shape[1]

        def split(x):
            b, n, c = x.shape
            src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
            dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
            return src, dst
        
        def split_coord(coord):
            b, n, c = coord.shape
            src = gather(coord, dim=1, index=a_idx.expand(b, n - num_dst, c))
            dst = gather(coord, dim=1, index=b_idx.expand(b, num_dst, c))
            return src, dst


        # Cosine similarity between A and B
        metric = metric / metric.norm(dim=-1, keepdim=True)
        a, b = split(metric)
        

        if coord is not None:
            src_coord, dst_coord = split_coord(coord)
            mask = torch.norm(src_coord[:,:,None,:] - dst_coord[:,None,:,:], dim=-1) > rec_field
            
        
        scores = a @ b.transpose(-1, -2)

        if coord is not None:
            scores[mask] = 0

        # Can't reduce more than the # tokens in src
        r = int(a.shape[1] * ratio)
        r = min(a.shape[1], r)



        if adhere_src:
            # scores = torch.sum(scores, dim=0)
            scores = torch.cat([*scores], dim = -1)
            node_max, node_idx = scores.max(dim=-1)
            edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]

            unm_idx = edge_idx[..., r:, :]  # Unmerged Tokens
            src_idx = edge_idx[..., :r, :]  # Merged Tokens
            dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst

            unm_idx = unm_idx.expand(B, -1, -1)
            src_idx = src_idx.expand(B, -1, -1)
            dst_idx = dst_idx.expand(B, -1, -1)
        else:
            # scores = torch.cat([*scores][1:], dim = -1)
            # node_max, node_idx = scores.max(dim=-1)
            # edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]

            # unm_idx = edge_idx[..., r:, :]  # Unmerged Tokens
            # src_idx = edge_idx[..., :r, :]  # Merged Tokens
            # dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst

            # unm_idx = unm_idx.expand(B, -1, -1)
            # src_idx = src_idx.expand(B, -1, -1)
            # dst_idx = dst_idx.expand(B, -1, -1)


            # Find the most similar greedily
            node_max, node_idx = scores.max(dim=-1)
            edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]

            unm_idx = edge_idx[..., r:, :]  # Unmerged Tokens
            src_idx = edge_idx[..., :r, :]  # Merged Tokens
            dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)

        # if adhere_src:
        #     unm_idx[:,...] = unm_idx[0:1]
        #     src_idx[:,...] = src_idx[0:1]
        #     dst_idx[:,...] = dst_idx[0:1]

    def merge(x: torch.Tensor, mode=None, b_select = None,  **kwarg) -> torch.Tensor:
        src, dst = split(x)
        n, t1, c = src.shape
        if b_select is not None:
            if not isinstance(b_select, list):
                b_select = [b_select]
            u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
        else:
            u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
        
        unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
        src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
        mode = mode if mode is not None else merge_mode
        if mode != "replace":
            dst = dst.scatter_reduce(-2, d_idx.expand(-1, -1, c), src, reduce=mode, include_self=True)
        # dst = dst.scatter(-2, dst_idx.expand(n, r, c), src, reduce='add')
        
        # dst_cnt = torch.ones_like(dst)
        # src_ones = torch.ones_like(src)
        # dst_cnt = dst_cnt.scatter(-2, dst_idx.expand(n, r, c), src_ones, reduce='add')

        # dst = dst / dst_cnt
        # dst2 = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode, include_self=True)
        # assert torch.allclose(dst1, dst2)

        return torch.cat([unm, dst], dim=1)

    def unmerge(x: torch.Tensor, b_select = None, unm_modi = None,  **kwarg) -> torch.Tensor:
        unm_len = unm_idx.shape[1]
        unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
        b, _, c = unm.shape
        if b_select is not None:
            if not isinstance(b_select, list):
                b_select = [b_select]
            u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
        else:
            u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
        if unm_modi is not None:
            if unm_modi == "zero":
                unm = torch.zeros_like(unm)
        src = gather(dst, dim=-2, index=d_idx.expand(-1, -1, c))

        # Combine back to the original shape
        out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
        out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
        out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=u_idx).expand(-1, -1, c), src=unm)
        out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=s_idx).expand(-1, -1, c), src=src)

        return out

    ret_dict = {"unm_num": unm_idx.shape[1]}
    return merge, unmerge, ret_dict

# For Global Token Merging.
def bipartite_soft_matching_2s( metric: torch.Tensor, 
                                src_len: int, ratio: float, align_batch: bool,
                                merge_mode: str = "replace", unmerge_chunk: int = 0) -> Tuple[Callable, Callable, dict]:
    """
    Partitions the tokens into src and dst and merges ratio of src tokens from src to dst.
    Src tokens are partitioned as first src_len tokens. Others are dst tokens.

    Args:
        - metric [B, N, C]: metric to use for similarity.
        - src_len: src token length. [ src | dst ]: [ src_len | N - src_len ]
        - ratio: ratio of src tokens to be removed (by merging).
        - unm_pre: number of src tokens not merged at previous ToMe. Pre-sequence: [unm_pre|F_0|F_1|...]
        - align_batch: whether to align similarity matching maps of samples in the batch. True when using PnP.
        - merge_mode: how to merge tokens. "mean": tokens -> Mean(src_token, dst_token); "replace": tokens -> dst_token.
        - unmerge_chunk: return which partition in unmerge. 0 for src and 1 for dst.

    Returns:
        Merge and unmerge operation according to the matching result. Return a dict including other values.
    """
    B, N, _ = metric.shape

    if ratio <= 0:
        return do_nothing, do_nothing

    gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather

    with torch.no_grad():

        idx_buffer = torch.arange(N, device=metric.device, dtype=torch.int64)

        # [ src | dst ]: [ src_len | N - src_len ]
        a_idx = idx_buffer[None, :src_len, None]
        b_idx = idx_buffer[None, src_len:, None]

        del idx_buffer

        num_dst = b_idx.shape[1]

        def split(x):
            # Split src, dst tokens
            b, n, c = x.shape
            src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
            dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
            return src, dst

        # Cosine similarity between src and dst tokens
        metric = metric / metric.norm(dim=-1, keepdim=True)
        a, b = split(metric)

        scores = a @ b.transpose(-1, -2)

        # Can't reduce more than the # tokens in src
        r = min(a.shape[1], int(a.shape[1] * ratio))

        if align_batch:
            # Cat scores of all samples in the batch. When using PnP, samples are (src, neg, pos).
            # Find the most similar greedily among all samples.
            scores = torch.cat([*scores], dim=-1)
            node_max, node_idx = scores.max(dim=-1)
            edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]

            unm_idx = edge_idx[..., r:, :]  # Unmerged Tokens
            src_idx = edge_idx[..., :r, :]  # Merged Tokens
            dst_idx = gather(node_idx[..., None],
                             dim=-2, index=src_idx) % num_dst # Map index to (0, num_dst - 1)
            
            # Use the same matching result for all samples
            unm_idx = unm_idx.expand(B, -1, -1)
            src_idx = src_idx.expand(B, -1, -1)
            dst_idx = dst_idx.expand(B, -1, -1)
        else:

            # Find the most similar greedily
            node_max, node_idx = scores.max(dim=-1)
            edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]

            unm_idx = edge_idx[..., r:, :]  # Unmerged Tokens
            src_idx = edge_idx[..., :r, :]  # Merged Tokens
            dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)

    def merge(x: torch.Tensor, mode=None) -> torch.Tensor:
        # Merge tokens according to matching result.
        src, dst = split(x)
        n, t1, c = src.shape
        u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx

        unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
        mode = mode if mode is not None else merge_mode
        if mode != "replace":
            src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
            # In other mode such as mean, combine matched src and dst tokens.
            dst = dst.scatter_reduce(-2, d_idx.expand(-1, -1, c),
                                     src, reduce=mode, include_self=True)
        # In replace mode, just cat unmerged tokens and dst tokens. Discard src tokens.
        return torch.cat([unm, dst], dim=1)

    def unmerge(x: torch.Tensor, **kwarg) -> torch.Tensor:
        # Unmerge tokens to original size according to matching result.
        unm_len = unm_idx.shape[1]
        unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
        b, _, c = unm.shape
        u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
        # Restored src tokens take value from dst tokens
        src = gather(dst, dim=-2, index=d_idx.expand(-1, -1, c))

        # Combine back to the original shape
        out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
        # Scatter dst tokens
        out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
        # Scatter unmerged tokens
        out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
                     dim=1, index=u_idx).expand(-1, -1, c), src=unm)
        # Scatter src tokens
        out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
                     dim=1, index=s_idx).expand(-1, -1, c), src=src)
        
        out = out[:, :src_len, :] if unmerge_chunk == 0 else out[:, src_len:, :]
        return out

    ret_dict = {"unm_num": unm_idx.shape[1]}
    return merge, unmerge, ret_dict


# Original ToMe
def bipartite_soft_matching_random2d(metric: torch.Tensor,
                                     w: int, h: int, sx: int, sy: int, r: int,
                                     no_rand: bool = False,
                                     generator: torch.Generator = None) -> Tuple[Callable, Callable]:
    """
    Partitions the tokens into src and dst and merges r tokens from src to dst.
    Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.

    Args:
     - metric [B, N, C]: metric to use for similarity
     - w: image width in tokens
     - h: image height in tokens
     - sx: stride in the x dimension for dst, must divide w
     - sy: stride in the y dimension for dst, must divide h
     - r: number of tokens to remove (by merging)
     - no_rand: if true, disable randomness (use top left corner only)
     - rand_seed: if no_rand is false, and if not None, sets random seed.
    """
    B, N, _ = metric.shape

    if r <= 0:
        return do_nothing, do_nothing

    gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather

    with torch.no_grad():
        hsy, wsx = h // sy, w // sx

        # For each sy by sx kernel, randomly assign one token to be dst and the rest src
        if no_rand:
            rand_idx = torch.zeros(
                hsy, wsx, 1, device=metric.device, dtype=torch.int64)
        else:
            rand_idx = torch.randint(
                sy*sx, size=(hsy, wsx, 1), device=generator.device, generator=generator).to(metric.device)

        # The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
        idx_buffer_view = torch.zeros(
            hsy, wsx, sy*sx, device=metric.device, dtype=torch.int64)
        idx_buffer_view.scatter_(
            dim=2, index=rand_idx, src=-torch.ones_like(rand_idx, dtype=rand_idx.dtype))
        idx_buffer_view = idx_buffer_view.view(
            hsy, wsx, sy, sx).transpose(1, 2).reshape(hsy * sy, wsx * sx)

        # Image is not divisible by sx or sy so we need to move it into a new buffer
        if (hsy * sy) < h or (wsx * sx) < w:
            idx_buffer = torch.zeros(
                h, w, device=metric.device, dtype=torch.int64)
            idx_buffer[:(hsy * sy), :(wsx * sx)] = idx_buffer_view
        else:
            idx_buffer = idx_buffer_view

        # We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices
        rand_idx = idx_buffer.reshape(1, -1, 1).argsort(dim=1)

        # We're finished with these
        del idx_buffer, idx_buffer_view

        # rand_idx is currently dst|src, so split them
        num_dst = hsy * wsx
        a_idx = rand_idx[:, num_dst:, :]  # src
        b_idx = rand_idx[:, :num_dst, :]  # dst

        def split(x):
            C = x.shape[-1]
            src = gather(x, dim=1, index=a_idx.expand(B, N - num_dst, C))
            dst = gather(x, dim=1, index=b_idx.expand(B, num_dst, C))
            return src, dst

        # Cosine similarity between A and B
        metric = metric / metric.norm(dim=-1, keepdim=True)
        a, b = split(metric)
        scores = a @ b.transpose(-1, -2)

        # Can't reduce more than the # tokens in src
        r = min(a.shape[1], r)

        # Find the most similar greedily
        node_max, node_idx = scores.max(dim=-1)
        edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]

        unm_idx = edge_idx[..., r:, :]  # Unmerged Tokens
        src_idx = edge_idx[..., :r, :]  # Merged Tokens
        dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)

    def merge(x: torch.Tensor, mode="mean") -> torch.Tensor:
        src, dst = split(x)
        n, t1, c = src.shape

        unm = gather(src, dim=-2, index=unm_idx.expand(n, t1 - r, c))
        src = gather(src, dim=-2, index=src_idx.expand(n, r, c))
        dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode)

        return torch.cat([unm, dst], dim=1)

    def unmerge(x: torch.Tensor) -> torch.Tensor:
        unm_len = unm_idx.shape[1]
        unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
        _, _, c = unm.shape

        src = gather(dst, dim=-2, index=dst_idx.expand(B, r, c))

        # Combine back to the original shape
        out = torch.zeros(B, N, c, device=x.device, dtype=x.dtype)
        out.scatter_(dim=-2, index=b_idx.expand(B, num_dst, c), src=dst)
        out.scatter_(dim=-2, index=gather(a_idx.expand(B,
                     a_idx.shape[1], 1), dim=1, index=unm_idx).expand(B, unm_len, c), src=unm)
        out.scatter_(dim=-2, index=gather(a_idx.expand(B,
                     a_idx.shape[1], 1), dim=1, index=src_idx).expand(B, r, c), src=src)

        return out

    return merge, unmerge


def bipartite_soft_matching_2f(metric: torch.Tensor, src_len: int, ratio: float, adhere_src: bool, merge_mode: str = "replace", scores = None, coord = None, rec_field = 2, unmerge_chunk = 0) -> Tuple[Callable, Callable]:
    """
    Partitions the tokens into src and dst and merges r tokens from src to dst.
    Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.

    Args:
     - metric [B, N, C]: metric to use for similarity
     - w: image width in tokens
     - h: image height in tokens
     - sx: stride in the x dimension for dst, must divide w
     - sy: stride in the y dimension for dst, must divide h
     - r: number of tokens to remove (by merging)
     - no_rand: if true, disable randomness (use top left corner only)
     - rand_seed: if no_rand is false, and if not None, sets random seed.
    """
    B, N, _ = metric.shape

    if ratio <= 0:
        return do_nothing, do_nothing

    gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
    
    with torch.no_grad():

        
        # The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
        idx_buffer = torch.arange(N, device=metric.device, dtype=torch.int64)


        # randn = torch.randint(0, F, torch.Size([nf])).to(idx_buffer) * nf
        # dst_indexes = torch.arange(nf, device=metric.device, dtype=torch.int64) + randn
        # dst_select = torch.zeros_like(idx_buffer).to(torch.bool)
        # dst_select[dst_indexes] = 1
        # randn = 0
        # dst_select = ((idx_buffer // nf) == 0).to(torch.bool)
        a_idx = idx_buffer[None, :src_len, None]
        b_idx = idx_buffer[None, src_len:, None]


        # We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices

        # We're finished with these
        del idx_buffer

        num_dst = b_idx.shape[1]

        def split(x):
            b, n, c = x.shape
            src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
            dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
            return src, dst
        
        def split_coord(coord):
            b, n, c = coord.shape
            src = gather(coord, dim=1, index=a_idx.expand(b, n - num_dst, c))
            dst = gather(coord, dim=1, index=b_idx.expand(b, num_dst, c))
            return src, dst


        # Cosine similarity between A and B
        metric = metric / metric.norm(dim=-1, keepdim=True)
        a, b = split(metric)
        

        if coord is not None:
            src_coord, dst_coord = split_coord(coord)
            mask = torch.norm(src_coord[:,:,None,:] - dst_coord[:,None,:,:], dim=-1) > rec_field
            
        
        scores = a @ b.transpose(-1, -2)

        if coord is not None:
            scores[mask] = 0

        # Can't reduce more than the # tokens in src
        r = int(a.shape[1] * ratio)
        r = min(a.shape[1], r)



        if adhere_src:
            scores = torch.cat([*scores], dim = -1)
            # scores = torch.sum(scores, dim=0)
            node_max, node_idx = scores.max(dim=-1)

            # nscores = torch.cat([*scores], dim = -2)
            # rev_node_max, rev_node_idx = nscores.max(dim = -2)

            edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]

            unm_idx = edge_idx[..., r:, :]  # Unmerged Tokens
            src_idx = edge_idx[..., :r, :]  # Merged Tokens
            dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst

            unm_idx = unm_idx.expand(B, -1, -1)
            src_idx = src_idx.expand(B, -1, -1)
            dst_idx = dst_idx.expand(B, -1, -1)
        else:
            # scores = torch.cat([*scores][1:], dim = -1)
            # node_max, node_idx = scores.max(dim=-1)
            # edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]

            # unm_idx = edge_idx[..., r:, :]  # Unmerged Tokens
            # src_idx = edge_idx[..., :r, :]  # Merged Tokens
            # dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst

            # unm_idx = unm_idx.expand(B, -1, -1)
            # src_idx = src_idx.expand(B, -1, -1)
            # dst_idx = dst_idx.expand(B, -1, -1)


            # Find the most similar greedily
            node_max, node_idx = scores.max(dim=-1)
            edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]

            unm_idx = edge_idx[..., r:, :]  # Unmerged Tokens
            src_idx = edge_idx[..., :r, :]  # Merged Tokens
            dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)

        # if adhere_src:
        #     unm_idx[:,...] = unm_idx[0:1]
        #     src_idx[:,...] = src_idx[0:1]
        #     dst_idx[:,...] = dst_idx[0:1]

    def merge(x: torch.Tensor, mode=None, b_select = None) -> torch.Tensor:

        src, dst = split(x)
        n, t1, c = src.shape
        if b_select is not None:
            if not isinstance(b_select, list):
                b_select = [b_select]
            u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
        else:
            u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
        
        unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
        # src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
        mode = mode if mode is not None else merge_mode
        if mode != "replace":
            dst = dst.scatter_reduce(-2, d_idx.expand(-1, -1, c), src, reduce=mode, include_self=True)
        # dst = dst.scatter(-2, dst_idx.expand(n, r, c), src, reduce='add')
        
        # dst_cnt = torch.ones_like(dst)
        # src_ones = torch.ones_like(src)
        # dst_cnt = dst_cnt.scatter(-2, dst_idx.expand(n, r, c), src_ones, reduce='add')

        # dst = dst / dst_cnt
        # dst2 = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode, include_self=True)
        # assert torch.allclose(dst1, dst2)

        return torch.cat([unm, dst], dim=1)

    def unmerge(x: torch.Tensor, b_select = None, unm_modi = None) -> torch.Tensor:



        unm_len = unm_idx.shape[1]
        unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
        b, _, c = unm.shape
        if b_select is not None:
            if not isinstance(b_select, list):
                b_select = [b_select]
            u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
        else:
            u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
        if unm_modi is not None:
            if unm_modi == "zero":
                unm = torch.zeros_like(unm)
        src = gather(dst, dim=-2, index=d_idx.expand(-1, -1, c))

        # Combine back to the original shape
        out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
        out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
        out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=u_idx).expand(-1, -1, c), src=unm)
        out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=s_idx).expand(-1, -1, c), src=src)

        
        if unmerge_chunk == 0:
            out = out[:,:src_len,:]
        else:
            out = out[:,src_len:,:]

        return out

    ret_dict = {"unm_num": unm_idx.shape[1]}
    return merge, unmerge, ret_dict