File size: 1,524 Bytes
a9b005e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
---
license: mit
---
# VidToMe: Video Token Merging for Zero-Shot Video Editing
Edit videos instantly with just a prompt! 🎥
Diffusers Implementation of VidToMe is a diffusion-based pipeline for zero-shot video editing that enhances temporal consistency and reduces memory usage by merging self-attention tokens across video frames.
This approach allows for a harmonious video generation and editing without needing to fine-tune the model.
By aligning and compressing redundant tokens across frames, VidToMe ensures smooth transitions and coherent video output, improving over traditional video editing methods.
It follows by [this paper](https://arxiv.org/abs/2312.10656).
## Usage
```python
from diffusers import DiffusionPipeline
# load the pretrained model
pipeline = DiffusionPipeline.from_pretrained("jadechoghari/VidToMe", trust_remote_code=True, custom_pipeline="jadechoghari/VidToMe", sd_version="depth", device="cuda", float_precision="fp16")
# Edit a video with prompts
pipeline(
video_path="path/to/video.mp4",
video_prompt="A serene beach scene",
edit_prompt="Make the sunset more vibrant",
control_type="depth",
n_timesteps=50
)
```
## Applications:
- Zero-shot video editing for content creators
- Video transformation using natural language prompts
- Memory-optimized video generation for longer or complex sequences
**Model Authors:**
- Xirui Li
- Chao Ma
- Xiaokang Yang
- Ming-Hsuan Yang
For more check the [Github Repo](https://github.com/lixirui142/VidToMe). |