File size: 31,891 Bytes
a051d95 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 |
import torch
from typing import Tuple, Callable
def do_nothing(x: torch.Tensor, mode: str = None):
return x
def mps_gather_workaround(input, dim, index):
if input.shape[-1] == 1:
return torch.gather(
input.unsqueeze(-1),
dim - 1 if dim < 0 else dim,
index.unsqueeze(-1)
).squeeze(-1)
else:
return torch.gather(input, dim, index)
# For Local Token Merging
def bipartite_soft_matching_randframe(metric: torch.Tensor,
F: int, ratio: float, unm_pre: int, generator: torch.Generator,
target_stride: int = 4, align_batch: bool = False,
merge_mode: str = "replace") -> Tuple[Callable, Callable, dict]:
"""
Partitions the multi-frame tokens into src and dst and merges ratio of src tokens from src to dst.
Dst tokens are partitioned by choosing one random frame.
Args:
- metric [B, N, C]: metric to use for similarity.
- F: frame number.
- ratio: ratio of src tokens to be removed (by merging).
- unm_pre: number of src tokens not merged at previous ToMe. Pre-sequence: [unm_pre|F_0|F_1|...]
- generator: random number generator
- target_stride: stride of target frame.
- align_batch: whether to align similarity matching maps of samples in the batch. True when using PnP.
- merge_mode: how to merge tokens. "mean": tokens -> Mean(src_token, dst_token); "replace": tokens -> dst_token.
Returns:
Merge and unmerge operation according to the matching result. Return a dict including other values.
"""
B, N, _ = metric.shape
# Compute pre-frame token number. N = unm_pre + tnum * F.
tnum = (N - unm_pre) // F
if ratio <= 0:
return do_nothing, do_nothing, {"unm_num": tnum}
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
with torch.no_grad():
# Prepare idx buffer. Ignore previous unmerged tokens.
idx_buffer = torch.arange(
N - unm_pre, device=metric.device, dtype=torch.int64)
# Select the random target frame.
target_stride = min(target_stride, F)
randf = torch.randint(0, target_stride, torch.Size(
[1]), generator=generator, device=generator.device)
dst_select = ((torch.div(idx_buffer, tnum, rounding_mode='floor')) %
target_stride == randf).to(torch.bool)
# a_idx: src index. b_idx: dst index
a_idx = idx_buffer[None, ~dst_select, None] + unm_pre
b_idx = idx_buffer[None, dst_select, None] + unm_pre
# Add unmerged tokens to dst.
unm_buffer = torch.arange(unm_pre, device=metric.device, dtype=torch.int64)[
None, :, None]
b_idx = torch.cat([b_idx, unm_buffer], dim=1)
# We're finished with these
del idx_buffer, unm_buffer
num_dst = b_idx.shape[1]
def split(x):
# Split src, dst tokens
b, n, c = x.shape
src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
return src, dst
# Cosine similarity between src and dst tokens
metric = metric / metric.norm(dim=-1, keepdim=True)
a, b = split(metric)
scores = a @ b.transpose(-1, -2)
# Can't reduce more than the # tokens in src
r = min(a.shape[1], int(a.shape[1] * ratio))
if align_batch:
# Cat scores of all samples in the batch. When using PnP, samples are (src, neg, pos).
# Find the most similar greedily among all samples.
scores = torch.cat([*scores], dim=-1)
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None],
dim=-2, index=src_idx) % num_dst # Map index to (0, num_dst - 1)
# Use the same matching result for all samples
unm_idx = unm_idx.expand(B, -1, -1)
src_idx = src_idx.expand(B, -1, -1)
dst_idx = dst_idx.expand(B, -1, -1)
else:
# Find the most similar greedily
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
def merge(x: torch.Tensor, mode=None) -> torch.Tensor:
# Merge tokens according to matching result.
src, dst = split(x)
n, t1, c = src.shape
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
mode = mode if mode is not None else merge_mode
if mode != "replace":
src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
# In other mode such as mean, combine matched src and dst tokens.
dst = dst.scatter_reduce(-2, d_idx.expand(-1, -1, c),
src, reduce=mode, include_self=True)
# In replace mode, just cat unmerged tokens and dst tokens. Ignore src tokens.
return torch.cat([unm, dst], dim=1)
def unmerge(x: torch.Tensor, **kwarg) -> torch.Tensor:
# Unmerge tokens to original size according to matching result.
unm_len = unm_idx.shape[1]
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
b, _, c = unm.shape
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
# Restored src tokens take value from dst tokens
src = gather(dst, dim=-2, index=d_idx.expand(-1, -1, c))
# Combine back to the original shape
out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
# Scatter dst tokens
out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
# Scatter unmerged tokens
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
dim=1, index=u_idx).expand(-1, -1, c), src=unm)
# Scatter src tokens
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
dim=1, index=s_idx).expand(-1, -1, c), src=src)
return out
# Return number of tokens not merged.
ret_dict = {"unm_num": unm_idx.shape[1] if unm_idx.shape[1] is not None else 0}
return merge, unmerge, ret_dict
def bipartite_soft_matching_random2d_hier(metric: torch.Tensor, frame_num: int, ratio: float, unm_pre: int, generator: torch.Generator, target_stride: int = 4, adhere_src: bool = False, merge_mode: str = "replace", scores = None, coord = None, rec_field = 2) -> Tuple[Callable, Callable]:
"""
Partitions the tokens into src and dst and merges r tokens from src to dst.
Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.
Args:
- metric [B, N, C]: metric to use for similarity
- w: image width in tokens
- h: image height in tokens
- sx: stride in the x dimension for dst, must divide w
- sy: stride in the y dimension for dst, must divide h
- r: number of tokens to remove (by merging)
- no_rand: if true, disable randomness (use top left corner only)
- rand_seed: if no_rand is false, and if not None, sets random seed.
"""
B, N, _ = metric.shape
F = frame_num
nf = (N - unm_pre) // F
if ratio <= 0:
return do_nothing, do_nothing
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
with torch.no_grad():
# The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
idx_buffer = torch.arange(N - unm_pre, device=metric.device, dtype=torch.int64)
# randn = torch.randint(0, F, torch.Size([nf])).to(idx_buffer) * nf
# dst_indexes = torch.arange(nf, device=metric.device, dtype=torch.int64) + randn
# dst_select = torch.zeros_like(idx_buffer).to(torch.bool)
# dst_select[dst_indexes] = 1
max_f = min(target_stride, F)
randn = torch.randint(0, max_f, torch.Size([1]), generator=generator, device = generator.device)
# randn = 0
dst_select = ((torch.div(idx_buffer, nf, rounding_mode='floor')) % max_f == randn).to(torch.bool)
# dst_select = ((idx_buffer // nf) == 0).to(torch.bool)
a_idx = idx_buffer[None, ~dst_select, None] + unm_pre
b_idx = idx_buffer[None, dst_select, None] + unm_pre
unm_buffer = torch.arange(unm_pre, device=metric.device, dtype=torch.int64)[None,:,None]
b_idx = torch.cat([b_idx, unm_buffer], dim = 1)
# We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices
# We're finished with these
del idx_buffer, unm_buffer
num_dst = b_idx.shape[1]
def split(x):
b, n, c = x.shape
src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
return src, dst
def split_coord(coord):
b, n, c = coord.shape
src = gather(coord, dim=1, index=a_idx.expand(b, n - num_dst, c))
dst = gather(coord, dim=1, index=b_idx.expand(b, num_dst, c))
return src, dst
# Cosine similarity between A and B
metric = metric / metric.norm(dim=-1, keepdim=True)
a, b = split(metric)
if coord is not None:
src_coord, dst_coord = split_coord(coord)
mask = torch.norm(src_coord[:,:,None,:] - dst_coord[:,None,:,:], dim=-1) > rec_field
scores = a @ b.transpose(-1, -2)
if coord is not None:
scores[mask] = 0
# Can't reduce more than the # tokens in src
r = int(a.shape[1] * ratio)
r = min(a.shape[1], r)
if adhere_src:
# scores = torch.sum(scores, dim=0)
scores = torch.cat([*scores], dim = -1)
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst
unm_idx = unm_idx.expand(B, -1, -1)
src_idx = src_idx.expand(B, -1, -1)
dst_idx = dst_idx.expand(B, -1, -1)
else:
# scores = torch.cat([*scores][1:], dim = -1)
# node_max, node_idx = scores.max(dim=-1)
# edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
# unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
# src_idx = edge_idx[..., :r, :] # Merged Tokens
# dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst
# unm_idx = unm_idx.expand(B, -1, -1)
# src_idx = src_idx.expand(B, -1, -1)
# dst_idx = dst_idx.expand(B, -1, -1)
# Find the most similar greedily
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
# if adhere_src:
# unm_idx[:,...] = unm_idx[0:1]
# src_idx[:,...] = src_idx[0:1]
# dst_idx[:,...] = dst_idx[0:1]
def merge(x: torch.Tensor, mode=None, b_select = None, **kwarg) -> torch.Tensor:
src, dst = split(x)
n, t1, c = src.shape
if b_select is not None:
if not isinstance(b_select, list):
b_select = [b_select]
u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
else:
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
mode = mode if mode is not None else merge_mode
if mode != "replace":
dst = dst.scatter_reduce(-2, d_idx.expand(-1, -1, c), src, reduce=mode, include_self=True)
# dst = dst.scatter(-2, dst_idx.expand(n, r, c), src, reduce='add')
# dst_cnt = torch.ones_like(dst)
# src_ones = torch.ones_like(src)
# dst_cnt = dst_cnt.scatter(-2, dst_idx.expand(n, r, c), src_ones, reduce='add')
# dst = dst / dst_cnt
# dst2 = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode, include_self=True)
# assert torch.allclose(dst1, dst2)
return torch.cat([unm, dst], dim=1)
def unmerge(x: torch.Tensor, b_select = None, unm_modi = None, **kwarg) -> torch.Tensor:
unm_len = unm_idx.shape[1]
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
b, _, c = unm.shape
if b_select is not None:
if not isinstance(b_select, list):
b_select = [b_select]
u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
else:
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
if unm_modi is not None:
if unm_modi == "zero":
unm = torch.zeros_like(unm)
src = gather(dst, dim=-2, index=d_idx.expand(-1, -1, c))
# Combine back to the original shape
out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=u_idx).expand(-1, -1, c), src=unm)
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=s_idx).expand(-1, -1, c), src=src)
return out
ret_dict = {"unm_num": unm_idx.shape[1]}
return merge, unmerge, ret_dict
# For Global Token Merging.
def bipartite_soft_matching_2s( metric: torch.Tensor,
src_len: int, ratio: float, align_batch: bool,
merge_mode: str = "replace", unmerge_chunk: int = 0) -> Tuple[Callable, Callable, dict]:
"""
Partitions the tokens into src and dst and merges ratio of src tokens from src to dst.
Src tokens are partitioned as first src_len tokens. Others are dst tokens.
Args:
- metric [B, N, C]: metric to use for similarity.
- src_len: src token length. [ src | dst ]: [ src_len | N - src_len ]
- ratio: ratio of src tokens to be removed (by merging).
- unm_pre: number of src tokens not merged at previous ToMe. Pre-sequence: [unm_pre|F_0|F_1|...]
- align_batch: whether to align similarity matching maps of samples in the batch. True when using PnP.
- merge_mode: how to merge tokens. "mean": tokens -> Mean(src_token, dst_token); "replace": tokens -> dst_token.
- unmerge_chunk: return which partition in unmerge. 0 for src and 1 for dst.
Returns:
Merge and unmerge operation according to the matching result. Return a dict including other values.
"""
B, N, _ = metric.shape
if ratio <= 0:
return do_nothing, do_nothing
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
with torch.no_grad():
idx_buffer = torch.arange(N, device=metric.device, dtype=torch.int64)
# [ src | dst ]: [ src_len | N - src_len ]
a_idx = idx_buffer[None, :src_len, None]
b_idx = idx_buffer[None, src_len:, None]
del idx_buffer
num_dst = b_idx.shape[1]
def split(x):
# Split src, dst tokens
b, n, c = x.shape
src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
return src, dst
# Cosine similarity between src and dst tokens
metric = metric / metric.norm(dim=-1, keepdim=True)
a, b = split(metric)
scores = a @ b.transpose(-1, -2)
# Can't reduce more than the # tokens in src
r = min(a.shape[1], int(a.shape[1] * ratio))
if align_batch:
# Cat scores of all samples in the batch. When using PnP, samples are (src, neg, pos).
# Find the most similar greedily among all samples.
scores = torch.cat([*scores], dim=-1)
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None],
dim=-2, index=src_idx) % num_dst # Map index to (0, num_dst - 1)
# Use the same matching result for all samples
unm_idx = unm_idx.expand(B, -1, -1)
src_idx = src_idx.expand(B, -1, -1)
dst_idx = dst_idx.expand(B, -1, -1)
else:
# Find the most similar greedily
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
def merge(x: torch.Tensor, mode=None) -> torch.Tensor:
# Merge tokens according to matching result.
src, dst = split(x)
n, t1, c = src.shape
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
mode = mode if mode is not None else merge_mode
if mode != "replace":
src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
# In other mode such as mean, combine matched src and dst tokens.
dst = dst.scatter_reduce(-2, d_idx.expand(-1, -1, c),
src, reduce=mode, include_self=True)
# In replace mode, just cat unmerged tokens and dst tokens. Discard src tokens.
return torch.cat([unm, dst], dim=1)
def unmerge(x: torch.Tensor, **kwarg) -> torch.Tensor:
# Unmerge tokens to original size according to matching result.
unm_len = unm_idx.shape[1]
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
b, _, c = unm.shape
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
# Restored src tokens take value from dst tokens
src = gather(dst, dim=-2, index=d_idx.expand(-1, -1, c))
# Combine back to the original shape
out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
# Scatter dst tokens
out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
# Scatter unmerged tokens
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
dim=1, index=u_idx).expand(-1, -1, c), src=unm)
# Scatter src tokens
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1),
dim=1, index=s_idx).expand(-1, -1, c), src=src)
out = out[:, :src_len, :] if unmerge_chunk == 0 else out[:, src_len:, :]
return out
ret_dict = {"unm_num": unm_idx.shape[1]}
return merge, unmerge, ret_dict
# Original ToMe
def bipartite_soft_matching_random2d(metric: torch.Tensor,
w: int, h: int, sx: int, sy: int, r: int,
no_rand: bool = False,
generator: torch.Generator = None) -> Tuple[Callable, Callable]:
"""
Partitions the tokens into src and dst and merges r tokens from src to dst.
Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.
Args:
- metric [B, N, C]: metric to use for similarity
- w: image width in tokens
- h: image height in tokens
- sx: stride in the x dimension for dst, must divide w
- sy: stride in the y dimension for dst, must divide h
- r: number of tokens to remove (by merging)
- no_rand: if true, disable randomness (use top left corner only)
- rand_seed: if no_rand is false, and if not None, sets random seed.
"""
B, N, _ = metric.shape
if r <= 0:
return do_nothing, do_nothing
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
with torch.no_grad():
hsy, wsx = h // sy, w // sx
# For each sy by sx kernel, randomly assign one token to be dst and the rest src
if no_rand:
rand_idx = torch.zeros(
hsy, wsx, 1, device=metric.device, dtype=torch.int64)
else:
rand_idx = torch.randint(
sy*sx, size=(hsy, wsx, 1), device=generator.device, generator=generator).to(metric.device)
# The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
idx_buffer_view = torch.zeros(
hsy, wsx, sy*sx, device=metric.device, dtype=torch.int64)
idx_buffer_view.scatter_(
dim=2, index=rand_idx, src=-torch.ones_like(rand_idx, dtype=rand_idx.dtype))
idx_buffer_view = idx_buffer_view.view(
hsy, wsx, sy, sx).transpose(1, 2).reshape(hsy * sy, wsx * sx)
# Image is not divisible by sx or sy so we need to move it into a new buffer
if (hsy * sy) < h or (wsx * sx) < w:
idx_buffer = torch.zeros(
h, w, device=metric.device, dtype=torch.int64)
idx_buffer[:(hsy * sy), :(wsx * sx)] = idx_buffer_view
else:
idx_buffer = idx_buffer_view
# We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices
rand_idx = idx_buffer.reshape(1, -1, 1).argsort(dim=1)
# We're finished with these
del idx_buffer, idx_buffer_view
# rand_idx is currently dst|src, so split them
num_dst = hsy * wsx
a_idx = rand_idx[:, num_dst:, :] # src
b_idx = rand_idx[:, :num_dst, :] # dst
def split(x):
C = x.shape[-1]
src = gather(x, dim=1, index=a_idx.expand(B, N - num_dst, C))
dst = gather(x, dim=1, index=b_idx.expand(B, num_dst, C))
return src, dst
# Cosine similarity between A and B
metric = metric / metric.norm(dim=-1, keepdim=True)
a, b = split(metric)
scores = a @ b.transpose(-1, -2)
# Can't reduce more than the # tokens in src
r = min(a.shape[1], r)
# Find the most similar greedily
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
def merge(x: torch.Tensor, mode="mean") -> torch.Tensor:
src, dst = split(x)
n, t1, c = src.shape
unm = gather(src, dim=-2, index=unm_idx.expand(n, t1 - r, c))
src = gather(src, dim=-2, index=src_idx.expand(n, r, c))
dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode)
return torch.cat([unm, dst], dim=1)
def unmerge(x: torch.Tensor) -> torch.Tensor:
unm_len = unm_idx.shape[1]
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
_, _, c = unm.shape
src = gather(dst, dim=-2, index=dst_idx.expand(B, r, c))
# Combine back to the original shape
out = torch.zeros(B, N, c, device=x.device, dtype=x.dtype)
out.scatter_(dim=-2, index=b_idx.expand(B, num_dst, c), src=dst)
out.scatter_(dim=-2, index=gather(a_idx.expand(B,
a_idx.shape[1], 1), dim=1, index=unm_idx).expand(B, unm_len, c), src=unm)
out.scatter_(dim=-2, index=gather(a_idx.expand(B,
a_idx.shape[1], 1), dim=1, index=src_idx).expand(B, r, c), src=src)
return out
return merge, unmerge
def bipartite_soft_matching_2f(metric: torch.Tensor, src_len: int, ratio: float, adhere_src: bool, merge_mode: str = "replace", scores = None, coord = None, rec_field = 2, unmerge_chunk = 0) -> Tuple[Callable, Callable]:
"""
Partitions the tokens into src and dst and merges r tokens from src to dst.
Dst tokens are partitioned by choosing one randomy in each (sx, sy) region.
Args:
- metric [B, N, C]: metric to use for similarity
- w: image width in tokens
- h: image height in tokens
- sx: stride in the x dimension for dst, must divide w
- sy: stride in the y dimension for dst, must divide h
- r: number of tokens to remove (by merging)
- no_rand: if true, disable randomness (use top left corner only)
- rand_seed: if no_rand is false, and if not None, sets random seed.
"""
B, N, _ = metric.shape
if ratio <= 0:
return do_nothing, do_nothing
gather = mps_gather_workaround if metric.device.type == "mps" else torch.gather
with torch.no_grad():
# The image might not divide sx and sy, so we need to work on a view of the top left if the idx buffer instead
idx_buffer = torch.arange(N, device=metric.device, dtype=torch.int64)
# randn = torch.randint(0, F, torch.Size([nf])).to(idx_buffer) * nf
# dst_indexes = torch.arange(nf, device=metric.device, dtype=torch.int64) + randn
# dst_select = torch.zeros_like(idx_buffer).to(torch.bool)
# dst_select[dst_indexes] = 1
# randn = 0
# dst_select = ((idx_buffer // nf) == 0).to(torch.bool)
a_idx = idx_buffer[None, :src_len, None]
b_idx = idx_buffer[None, src_len:, None]
# We set dst tokens to be -1 and src to be 0, so an argsort gives us dst|src indices
# We're finished with these
del idx_buffer
num_dst = b_idx.shape[1]
def split(x):
b, n, c = x.shape
src = gather(x, dim=1, index=a_idx.expand(b, n - num_dst, c))
dst = gather(x, dim=1, index=b_idx.expand(b, num_dst, c))
return src, dst
def split_coord(coord):
b, n, c = coord.shape
src = gather(coord, dim=1, index=a_idx.expand(b, n - num_dst, c))
dst = gather(coord, dim=1, index=b_idx.expand(b, num_dst, c))
return src, dst
# Cosine similarity between A and B
metric = metric / metric.norm(dim=-1, keepdim=True)
a, b = split(metric)
if coord is not None:
src_coord, dst_coord = split_coord(coord)
mask = torch.norm(src_coord[:,:,None,:] - dst_coord[:,None,:,:], dim=-1) > rec_field
scores = a @ b.transpose(-1, -2)
if coord is not None:
scores[mask] = 0
# Can't reduce more than the # tokens in src
r = int(a.shape[1] * ratio)
r = min(a.shape[1], r)
if adhere_src:
scores = torch.cat([*scores], dim = -1)
# scores = torch.sum(scores, dim=0)
node_max, node_idx = scores.max(dim=-1)
# nscores = torch.cat([*scores], dim = -2)
# rev_node_max, rev_node_idx = nscores.max(dim = -2)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst
unm_idx = unm_idx.expand(B, -1, -1)
src_idx = src_idx.expand(B, -1, -1)
dst_idx = dst_idx.expand(B, -1, -1)
else:
# scores = torch.cat([*scores][1:], dim = -1)
# node_max, node_idx = scores.max(dim=-1)
# edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
# unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
# src_idx = edge_idx[..., :r, :] # Merged Tokens
# dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx) % num_dst
# unm_idx = unm_idx.expand(B, -1, -1)
# src_idx = src_idx.expand(B, -1, -1)
# dst_idx = dst_idx.expand(B, -1, -1)
# Find the most similar greedily
node_max, node_idx = scores.max(dim=-1)
edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
src_idx = edge_idx[..., :r, :] # Merged Tokens
dst_idx = gather(node_idx[..., None], dim=-2, index=src_idx)
# if adhere_src:
# unm_idx[:,...] = unm_idx[0:1]
# src_idx[:,...] = src_idx[0:1]
# dst_idx[:,...] = dst_idx[0:1]
def merge(x: torch.Tensor, mode=None, b_select = None) -> torch.Tensor:
src, dst = split(x)
n, t1, c = src.shape
if b_select is not None:
if not isinstance(b_select, list):
b_select = [b_select]
u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
else:
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
unm = gather(src, dim=-2, index=u_idx.expand(-1, -1, c))
# src = gather(src, dim=-2, index=s_idx.expand(-1, -1, c))
mode = mode if mode is not None else merge_mode
if mode != "replace":
dst = dst.scatter_reduce(-2, d_idx.expand(-1, -1, c), src, reduce=mode, include_self=True)
# dst = dst.scatter(-2, dst_idx.expand(n, r, c), src, reduce='add')
# dst_cnt = torch.ones_like(dst)
# src_ones = torch.ones_like(src)
# dst_cnt = dst_cnt.scatter(-2, dst_idx.expand(n, r, c), src_ones, reduce='add')
# dst = dst / dst_cnt
# dst2 = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode, include_self=True)
# assert torch.allclose(dst1, dst2)
return torch.cat([unm, dst], dim=1)
def unmerge(x: torch.Tensor, b_select = None, unm_modi = None) -> torch.Tensor:
unm_len = unm_idx.shape[1]
unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
b, _, c = unm.shape
if b_select is not None:
if not isinstance(b_select, list):
b_select = [b_select]
u_idx, s_idx, d_idx = unm_idx[b_select], src_idx[b_select], dst_idx[b_select]
else:
u_idx, s_idx, d_idx = unm_idx, src_idx, dst_idx
if unm_modi is not None:
if unm_modi == "zero":
unm = torch.zeros_like(unm)
src = gather(dst, dim=-2, index=d_idx.expand(-1, -1, c))
# Combine back to the original shape
out = torch.zeros(b, N, c, device=x.device, dtype=x.dtype)
out.scatter_(dim=-2, index=b_idx.expand(b, -1, c), src=dst)
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=u_idx).expand(-1, -1, c), src=unm)
out.scatter_(dim=-2, index=gather(a_idx.expand(b, -1, 1), dim=1, index=s_idx).expand(-1, -1, c), src=src)
if unmerge_chunk == 0:
out = out[:,:src_len,:]
else:
out = out[:,src_len:,:]
return out
ret_dict = {"unm_num": unm_idx.shape[1]}
return merge, unmerge, ret_dict |