|
import torch.nn as nn |
|
import torch |
|
from tqdm import tqdm |
|
import os |
|
from transformers import logging |
|
|
|
from .utils import load_config, save_config |
|
from .utils import get_controlnet_kwargs, get_latents_dir, init_model, seed_everything |
|
from .utils import load_video, prepare_depth, save_frames, control_preprocess |
|
|
|
|
|
logging.set_verbosity_error() |
|
|
|
|
|
class Inverter(nn.Module): |
|
def __init__(self, pipe, scheduler, config): |
|
super().__init__() |
|
|
|
self.device = config.device |
|
self.use_depth = config.sd_version == "depth" |
|
self.model_key = config.model_key |
|
|
|
self.config = config |
|
inv_config = config.inversion |
|
|
|
float_precision = inv_config.float_precision if "float_precision" in inv_config else config.float_precision |
|
if float_precision == "fp16": |
|
self.dtype = torch.float16 |
|
print("[INFO] float precision fp16. Use torch.float16.") |
|
else: |
|
self.dtype = torch.float32 |
|
print("[INFO] float precision fp32. Use torch.float32.") |
|
|
|
self.pipe = pipe |
|
self.vae = pipe.vae |
|
self.tokenizer = pipe.tokenizer |
|
self.unet = pipe.unet |
|
self.text_encoder = pipe.text_encoder |
|
if config.enable_xformers_memory_efficient_attention: |
|
try: |
|
pipe.enable_xformers_memory_efficient_attention() |
|
except ModuleNotFoundError: |
|
print("[WARNING] xformers not found. Disable xformers attention.") |
|
|
|
self.control = inv_config.control |
|
if self.control != "none": |
|
self.controlnet = pipe.controlnet |
|
|
|
self.controlnet_scale = inv_config.control_scale |
|
|
|
scheduler.set_timesteps(inv_config.save_steps) |
|
self.timesteps_to_save = scheduler.timesteps |
|
scheduler.set_timesteps(inv_config.steps) |
|
|
|
self.scheduler = scheduler |
|
|
|
self.prompt=inv_config.prompt |
|
self.recon=inv_config.recon |
|
self.save_latents=inv_config.save_intermediate |
|
self.use_blip=inv_config.use_blip |
|
self.steps=inv_config.steps |
|
self.batch_size = inv_config.batch_size |
|
self.force = inv_config.force |
|
|
|
self.n_frames = inv_config.n_frames |
|
self.frame_height, self.frame_width = config.height, config.width |
|
self.work_dir = config.work_dir |
|
|
|
|
|
@torch.no_grad() |
|
def get_text_embeds(self, prompt, negative_prompt=None, device="cuda"): |
|
text_input = self.tokenizer(prompt, padding='max_length', max_length=self.tokenizer.model_max_length, |
|
truncation=True, return_tensors='pt') |
|
text_embeddings = self.text_encoder(text_input.input_ids.to(device))[0] |
|
if negative_prompt is not None: |
|
uncond_input = self.tokenizer(negative_prompt, padding='max_length', max_length=self.tokenizer.model_max_length, |
|
return_tensors='pt') |
|
uncond_embeddings = self.text_encoder( |
|
uncond_input.input_ids.to(device))[0] |
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings]) |
|
return text_embeddings |
|
|
|
@torch.no_grad() |
|
def decode_latents(self, latents): |
|
with torch.autocast(device_type=self.device, dtype=self.dtype): |
|
latents = 1 / 0.18215 * latents |
|
imgs = self.vae.decode(latents).sample |
|
imgs = (imgs / 2 + 0.5).clamp(0, 1) |
|
return imgs |
|
|
|
@torch.no_grad() |
|
def decode_latents_batch(self, latents): |
|
imgs = [] |
|
batch_latents = latents.split(self.batch_size, dim = 0) |
|
for latent in batch_latents: |
|
imgs += [self.decode_latents(latent)] |
|
imgs = torch.cat(imgs) |
|
return imgs |
|
|
|
@torch.no_grad() |
|
def encode_imgs(self, imgs): |
|
with torch.autocast(device_type=self.device, dtype=self.dtype): |
|
imgs = 2 * imgs - 1 |
|
posterior = self.vae.encode(imgs).latent_dist |
|
latents = posterior.mean * 0.18215 |
|
return latents |
|
|
|
@torch.no_grad() |
|
def encode_imgs_batch(self, imgs): |
|
latents = [] |
|
batch_imgs = imgs.split(self.batch_size, dim = 0) |
|
for img in batch_imgs: |
|
latents += [self.encode_imgs(img)] |
|
latents = torch.cat(latents) |
|
return latents |
|
|
|
@torch.no_grad() |
|
def ddim_inversion(self, x, conds, save_path): |
|
print("[INFO] start DDIM Inversion!") |
|
timesteps = reversed(self.scheduler.timesteps) |
|
with torch.autocast(device_type=self.device, dtype=self.dtype): |
|
for i, t in enumerate(tqdm(timesteps)): |
|
noises = [] |
|
x_index = torch.arange(len(x)) |
|
batches = x_index.split(self.batch_size, dim = 0) |
|
for batch in batches: |
|
noise = self.pred_noise( |
|
x[batch], conds[batch], timesteps[i], batch_idx=batch) |
|
noises += [noise] |
|
noises = torch.cat(noises) |
|
x = self.pred_next_x(x, noises, t, i, inversion=True) |
|
if self.save_latents and t in self.timesteps_to_save: |
|
torch.save(x, os.path.join( |
|
save_path, f'noisy_latents_{t}.pt')) |
|
|
|
|
|
pth = os.path.join(save_path, f'noisy_latents_{t}.pt') |
|
torch.save(x, pth) |
|
print(f"[INFO] inverted latent saved to: {pth}") |
|
return x |
|
|
|
@torch.no_grad() |
|
def ddim_sample(self, x, conds): |
|
print("[INFO] reconstructing frames...") |
|
timesteps = self.scheduler.timesteps |
|
with torch.autocast(device_type=self.device, dtype=self.dtype): |
|
for i, t in enumerate(tqdm(timesteps)): |
|
noises = [] |
|
x_index = torch.arange(len(x)) |
|
batches = x_index.split(self.batch_size, dim = 0) |
|
for batch in batches: |
|
noise = self.pred_noise( |
|
x[batch], conds[batch], t, batch_idx=batch) |
|
noises += [noise] |
|
noises = torch.cat(noises) |
|
x = self.pred_next_x(x, noises, t, i, inversion=False) |
|
return x |
|
|
|
@torch.no_grad() |
|
def pred_noise(self, x, cond, t, batch_idx=None): |
|
|
|
if self.use_depth: |
|
depth = self.depths |
|
if batch_idx is not None: |
|
depth = depth[batch_idx] |
|
x = torch.cat([x, depth.to(x)], dim=1) |
|
|
|
kwargs = dict() |
|
|
|
if self.control != "none": |
|
if batch_idx is None: |
|
controlnet_cond = self.controlnet_images |
|
else: |
|
controlnet_cond = self.controlnet_images[batch_idx] |
|
controlnet_kwargs = get_controlnet_kwargs(self.controlnet, x, cond, t, controlnet_cond, self.controlnet_scale) |
|
kwargs.update(controlnet_kwargs) |
|
|
|
eps = self.unet(x, t, encoder_hidden_states=cond, **kwargs).sample |
|
return eps |
|
|
|
@torch.no_grad() |
|
def pred_next_x(self, x, eps, t, i, inversion=False): |
|
if inversion: |
|
timesteps = reversed(self.scheduler.timesteps) |
|
else: |
|
timesteps = self.scheduler.timesteps |
|
alpha_prod_t = self.scheduler.alphas_cumprod[t] |
|
if inversion: |
|
alpha_prod_t_prev = ( |
|
self.scheduler.alphas_cumprod[timesteps[i - 1]] |
|
if i > 0 else self.scheduler.final_alpha_cumprod |
|
) |
|
else: |
|
alpha_prod_t_prev = ( |
|
self.scheduler.alphas_cumprod[timesteps[i + 1]] |
|
if i < len(timesteps) - 1 |
|
else self.scheduler.final_alpha_cumprod |
|
) |
|
mu = alpha_prod_t ** 0.5 |
|
sigma = (1 - alpha_prod_t) ** 0.5 |
|
mu_prev = alpha_prod_t_prev ** 0.5 |
|
sigma_prev = (1 - alpha_prod_t_prev) ** 0.5 |
|
|
|
if inversion: |
|
pred_x0 = (x - sigma_prev * eps) / mu_prev |
|
x = mu * pred_x0 + sigma * eps |
|
else: |
|
pred_x0 = (x - sigma * eps) / mu |
|
x = mu_prev * pred_x0 + sigma_prev * eps |
|
|
|
return x |
|
|
|
@torch.no_grad() |
|
def prepare_cond(self, prompts, n_frames): |
|
if isinstance(prompts, str): |
|
prompts = [prompts] * n_frames |
|
cond = self.get_text_embeds(prompts[0]) |
|
conds = torch.cat([cond] * n_frames) |
|
elif isinstance(prompts, list): |
|
cond_ls = [] |
|
for prompt in prompts: |
|
cond = self.get_text_embeds(prompt) |
|
cond_ls += [cond] |
|
conds = torch.cat(cond_ls) |
|
return conds, prompts |
|
|
|
def check_latent_exists(self, save_path): |
|
save_timesteps = [self.scheduler.timesteps[0]] |
|
if self.save_latents: |
|
save_timesteps += self.timesteps_to_save |
|
for ts in save_timesteps: |
|
latent_path = os.path.join( |
|
save_path, f'noisy_latents_{ts}.pt') |
|
if not os.path.exists(latent_path): |
|
return False |
|
return True |
|
|
|
|
|
@torch.no_grad() |
|
def __call__(self, data_path, save_path): |
|
self.scheduler.set_timesteps(self.steps) |
|
save_path = get_latents_dir(save_path, self.model_key) |
|
os.makedirs(save_path, exist_ok = True) |
|
if self.check_latent_exists(save_path) and not self.force: |
|
print(f"[INFO] inverted latents exist at: {save_path}. Skip inversion! Set 'inversion.force: True' to invert again.") |
|
return |
|
|
|
frames = load_video(data_path, self.frame_height, self.frame_width, device = self.device) |
|
|
|
frame_ids = list(range(len(frames))) |
|
if self.n_frames is not None: |
|
frame_ids = frame_ids[:self.n_frames] |
|
frames = frames[frame_ids] |
|
|
|
if self.use_depth: |
|
self.depths = prepare_depth(self.pipe, frames, frame_ids, self.work_dir) |
|
conds, prompts = self.prepare_cond(self.prompt, len(frames)) |
|
with open(os.path.join(save_path, 'inversion_prompts.txt'), 'w') as f: |
|
f.write('\n'.join(prompts)) |
|
|
|
if self.control != "none": |
|
images = control_preprocess( |
|
frames, self.control) |
|
self.controlnet_images = images.to(self.device) |
|
|
|
latents = self.encode_imgs_batch(frames) |
|
torch.cuda.empty_cache() |
|
print(f"[INFO] clean latents shape: {latents.shape}") |
|
|
|
inverted_x = self.ddim_inversion(latents, conds, save_path) |
|
save_config(self.config, save_path, inv = True) |
|
if self.recon: |
|
latent_reconstruction = self.ddim_sample(inverted_x, conds) |
|
|
|
torch.cuda.empty_cache() |
|
recon_frames = self.decode_latents_batch( |
|
latent_reconstruction) |
|
|
|
recon_save_path = os.path.join(save_path, 'recon_frames') |
|
save_frames(recon_frames, recon_save_path, frame_ids = frame_ids) |
|
|
|
if __name__ == "__main__": |
|
config = load_config() |
|
pipe, scheduler, model_key = init_model( |
|
config.device, config.sd_version, config.model_key, config.inversion.control, config.float_precision) |
|
config.model_key = model_key |
|
seed_everything(config.seed) |
|
inversion = Inverter(pipe, scheduler, config) |
|
inversion(config.input_path, config.inversion.save_path) |