distilbert-base-uncased-rvl-cdip

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2055
  • Accuracy: 0.7079

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 48 2.4392 0.45
No log 2.0 96 1.5529 0.5632
No log 3.0 144 1.3164 0.6132
No log 4.0 192 1.1269 0.6395
No log 5.0 240 1.0145 0.7
No log 6.0 288 1.0839 0.6816
No log 7.0 336 1.1414 0.6868
No log 8.0 384 1.1220 0.7053
No log 9.0 432 1.1402 0.7105
No log 10.0 480 1.1805 0.7132
0.8154 11.0 528 1.1923 0.7132
0.8154 12.0 576 1.2007 0.7079
0.8154 13.0 624 1.1973 0.7079
0.8154 14.0 672 1.2049 0.7105
0.8154 15.0 720 1.2055 0.7079

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
21
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jagadeesr/distilbert-base-uncased-rvl-cdip

Finetuned
(7186)
this model