text_classifier / README.md
jagadeesr's picture
jagadeesr/ms-deberta-v3-small-rvl-cdip
6ebfec4
---
license: mit
base_model: microsoft/deberta-v3-small
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: text_classifier
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# text_classifier
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2472
- Accuracy: 0.6158
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 2.4863 | 1.0 | 760 | 2.0973 | 0.2474 |
| 1.8132 | 2.0 | 1520 | 1.7995 | 0.4237 |
| 1.5143 | 3.0 | 2280 | 1.5842 | 0.5053 |
| 1.3095 | 4.0 | 3040 | 1.8946 | 0.5553 |
| 1.0743 | 5.0 | 3800 | 1.9189 | 0.5684 |
| 0.9554 | 6.0 | 4560 | 2.1748 | 0.5974 |
| 0.7778 | 7.0 | 5320 | 2.2701 | 0.6263 |
| 0.5849 | 8.0 | 6080 | 2.5282 | 0.6237 |
| 0.5472 | 9.0 | 6840 | 2.7330 | 0.6184 |
| 0.4232 | 10.0 | 7600 | 2.9518 | 0.6079 |
| 0.2858 | 11.0 | 8360 | 2.8892 | 0.6263 |
| 0.2908 | 12.0 | 9120 | 3.0251 | 0.6289 |
| 0.2391 | 13.0 | 9880 | 3.1414 | 0.6211 |
| 0.1569 | 14.0 | 10640 | 3.2581 | 0.6184 |
| 0.1405 | 15.0 | 11400 | 3.2472 | 0.6158 |
### Framework versions
- Transformers 4.36.0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0