fine-tuning-xlmr-large

This model is a fine-tuned version of xlm-roberta-large on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7558
  • Accuracy: 0.7692
  • Precision: 0.7692
  • Recall: 0.7692
  • F1 Score: 0.7693

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 101
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Score
1.3385 1.0 10330 1.8072 0.5708 0.5708 0.5708 0.5622
1.7231 2.0 20660 1.8354 0.6445 0.6445 0.6445 0.6454
1.4049 3.0 30990 1.8380 0.6969 0.6969 0.6969 0.6990
1.4543 4.0 41320 1.5726 0.7415 0.7415 0.7415 0.7417
1.4139 5.0 51650 1.6838 0.7424 0.7424 0.7424 0.7439
1.2368 6.0 61980 1.6794 0.7424 0.7424 0.7424 0.7448
1.0418 7.0 72310 1.6720 0.7542 0.7542 0.7542 0.7556
1.246 8.0 82640 1.6746 0.7638 0.7638 0.7638 0.7642
0.9896 9.0 92970 1.7497 0.7674 0.7674 0.7674 0.7666
0.9855 10.0 103300 1.7558 0.7692 0.7692 0.7692 0.7693

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.0.0
  • Datasets 2.1.0
  • Tokenizers 0.15.0
Downloads last month
41
Safetensors
Model size
560M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jalaluddin94/fine-tuning-xlmr-large

Finetuned
(331)
this model