marker-associations-binary-base
This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the marker-associations-binary-base dataset. It achieves the following results on the evaluation set:
Gene Results
- Precision = 0.808
- Recall = 0.940
- F1 = 0.869
- Accuracy = 0.862
- AUC = 0.944
Chemical Results
- Precision = 0.774
- Recall = 1.0
- F1 = 0.873
- Accuracy = 0.926
- AUC = 0.964
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Auc |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 88 | 0.3266 | 0.8191 | 0.8462 | 0.8324 | 0.8670 | 0.9313 |
No log | 2.0 | 176 | 0.3335 | 0.7870 | 0.9341 | 0.8543 | 0.8755 | 0.9465 |
No log | 3.0 | 264 | 0.4243 | 0.7982 | 0.9560 | 0.87 | 0.8884 | 0.9516 |
No log | 4.0 | 352 | 0.5388 | 0.825 | 0.7253 | 0.7719 | 0.8326 | 0.9384 |
No log | 5.0 | 440 | 0.7101 | 0.8537 | 0.7692 | 0.8092 | 0.8584 | 0.9416 |
0.1824 | 6.0 | 528 | 0.6175 | 0.8242 | 0.8242 | 0.8242 | 0.8627 | 0.9478 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Tokenizers 0.10.3
- Downloads last month
- 16
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Evaluation results
- Precision on marker-associations-binary-baseself-reported0.798
- Recall on marker-associations-binary-baseself-reported0.956
- F1 on marker-associations-binary-baseself-reported0.870
- Accuracy on marker-associations-binary-baseself-reported0.888