marker-associations-snp-binary-base
This model is a fine-tuned version of microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext on the marker-associations-snp-binary-base dataset. It achieves the following results on the evaluation set:
- Loss: 0.4027
- Precision: 0.9384
- Recall: 0.9056
- F1: 0.9217
- Accuracy: 0.9108
- Auc: 0.9578
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 1
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | Auc |
---|---|---|---|---|---|---|---|---|
No log | 1.0 | 153 | 0.2776 | 0.9 | 0.9441 | 0.9215 | 0.9067 | 0.9613 |
No log | 2.0 | 306 | 0.4380 | 0.9126 | 0.9126 | 0.9126 | 0.8986 | 0.9510 |
No log | 3.0 | 459 | 0.4027 | 0.9384 | 0.9056 | 0.9217 | 0.9108 | 0.9578 |
0.2215 | 4.0 | 612 | 0.3547 | 0.9449 | 0.8986 | 0.9211 | 0.9108 | 0.9642 |
0.2215 | 5.0 | 765 | 0.4465 | 0.9107 | 0.9266 | 0.9185 | 0.9047 | 0.9636 |
0.2215 | 6.0 | 918 | 0.5770 | 0.8970 | 0.9441 | 0.9199 | 0.9047 | 0.9666 |
Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Tokenizers 0.10.3
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Evaluation results
- Precision on marker-associations-snp-binary-baseself-reported0.938
- Recall on marker-associations-snp-binary-baseself-reported0.906
- F1 on marker-associations-snp-binary-baseself-reported0.922
- Accuracy on marker-associations-snp-binary-baseself-reported0.911