xlm-roberta-xl-lora / README.md
jamesngai's picture
update model card README.md
70aeb7a
metadata
license: mit
base_model: facebook/xlm-roberta-xl
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: xlm-roberta-xl-lora
    results: []

xlm-roberta-xl-lora

This model is a fine-tuned version of facebook/xlm-roberta-xl on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5846
  • Precision: 0.8927
  • Recall: 0.9038
  • F1: 0.8982
  • Accuracy: 0.9154

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 63
  • num_epochs: 50
  • label_smoothing_factor: 0.2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.0 126 3.4068 0.2417 0.2988 0.2672 0.2522
No log 4.0 252 2.5708 0.5402 0.6641 0.5958 0.6379
No log 6.0 378 2.2050 0.6278 0.7262 0.6734 0.7242
2.8519 8.0 504 2.0050 0.7250 0.7922 0.7571 0.7955
2.8519 10.0 630 1.8831 0.8083 0.8427 0.8252 0.8531
2.8519 12.0 756 1.7923 0.8453 0.8630 0.8540 0.8756
2.8519 14.0 882 1.7371 0.8496 0.8693 0.8593 0.8843
1.8053 16.0 1008 1.7031 0.8529 0.8753 0.8640 0.8886
1.8053 18.0 1134 1.6692 0.8691 0.8812 0.8751 0.8969
1.8053 20.0 1260 1.6555 0.8699 0.8856 0.8777 0.8991
1.8053 22.0 1386 1.6359 0.8824 0.8903 0.8863 0.9054
1.6089 24.0 1512 1.6303 0.8756 0.8919 0.8837 0.9043
1.6089 26.0 1638 1.6169 0.8806 0.8935 0.8870 0.9063
1.6089 28.0 1764 1.6105 0.8876 0.8952 0.8914 0.9088
1.6089 30.0 1890 1.6067 0.8861 0.8981 0.8920 0.9089
1.5373 32.0 2016 1.5998 0.8870 0.8989 0.8929 0.9109
1.5373 34.0 2142 1.5967 0.8900 0.8996 0.8948 0.9121
1.5373 36.0 2268 1.5939 0.8912 0.9015 0.8964 0.9137
1.5373 38.0 2394 1.5922 0.8914 0.9014 0.8964 0.9135
1.501 40.0 2520 1.5894 0.8920 0.9021 0.8970 0.9142
1.501 42.0 2646 1.5874 0.8900 0.9029 0.8964 0.9139
1.501 44.0 2772 1.5865 0.8930 0.9043 0.8986 0.9155
1.501 46.0 2898 1.5866 0.8906 0.9036 0.8971 0.9146
1.4812 48.0 3024 1.5853 0.8907 0.9033 0.8970 0.9148
1.4812 50.0 3150 1.5846 0.8927 0.9038 0.8982 0.9154

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.1.0
  • Datasets 2.14.5
  • Tokenizers 0.13.3