xlm-roberta-xl-lora4

This model is a fine-tuned version of facebook/xlm-roberta-xl on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2790
  • Precision: 0.9287
  • Recall: 0.9301
  • F1: 0.9294
  • Accuracy: 0.9392

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 63
  • num_epochs: 50
  • label_smoothing_factor: 0.15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
3.6153 1.0 63 2.8304 0.5449 0.6685 0.6004 0.6459
2.4657 2.0 126 2.1379 0.7373 0.8004 0.7676 0.8065
1.9364 3.0 189 1.7624 0.8330 0.8617 0.8472 0.8740
1.6441 4.0 252 1.5723 0.8663 0.8816 0.8739 0.8949
1.494 5.0 315 1.4820 0.8779 0.8884 0.8831 0.9020
1.3987 6.0 378 1.4190 0.8961 0.9012 0.8987 0.9135
1.3388 7.0 441 1.3814 0.9023 0.9073 0.9048 0.9187
1.2947 8.0 504 1.3609 0.8976 0.9082 0.9029 0.9200
1.2585 9.0 567 1.3415 0.8965 0.9113 0.9038 0.9203
1.2317 10.0 630 1.3246 0.9095 0.9095 0.9095 0.9246
1.2081 11.0 693 1.3111 0.9095 0.9143 0.9119 0.9268
1.1869 12.0 756 1.3005 0.9161 0.9194 0.9177 0.9305
1.1711 13.0 819 1.3085 0.9069 0.9169 0.9119 0.9265
1.1557 14.0 882 1.2989 0.9191 0.9204 0.9198 0.9309
1.1486 15.0 945 1.2962 0.9166 0.9185 0.9176 0.9295
1.1392 16.0 1008 1.2796 0.9202 0.9228 0.9215 0.9348
1.127 17.0 1071 1.2830 0.9200 0.9229 0.9214 0.9341
1.1224 18.0 1134 1.2814 0.9184 0.9248 0.9216 0.9336
1.1146 19.0 1197 1.2775 0.9206 0.9260 0.9233 0.9356
1.1081 20.0 1260 1.2798 0.9251 0.9263 0.9257 0.9358
1.1006 21.0 1323 1.2756 0.9220 0.9257 0.9238 0.9364
1.0972 22.0 1386 1.2755 0.9176 0.9258 0.9217 0.9357
1.0926 23.0 1449 1.2795 0.9217 0.9267 0.9242 0.9366
1.0898 24.0 1512 1.2830 0.9213 0.9260 0.9236 0.9348
1.0847 25.0 1575 1.2749 0.9234 0.9275 0.9255 0.9377
1.0818 26.0 1638 1.2806 0.9245 0.9270 0.9257 0.9368
1.0796 27.0 1701 1.2760 0.9243 0.9283 0.9263 0.9372
1.0753 28.0 1764 1.2776 0.9220 0.9264 0.9242 0.9364
1.072 29.0 1827 1.2755 0.9265 0.9288 0.9276 0.9388
1.0686 30.0 1890 1.2752 0.9240 0.9246 0.9243 0.9365
1.0676 31.0 1953 1.2755 0.9271 0.9293 0.9282 0.9386
1.0663 32.0 2016 1.2771 0.9261 0.9282 0.9272 0.9383
1.0646 33.0 2079 1.2774 0.9235 0.9283 0.9259 0.9370
1.0641 34.0 2142 1.2710 0.9274 0.9313 0.9294 0.9398
1.0648 35.0 2205 1.2759 0.9259 0.9284 0.9271 0.9387
1.0623 36.0 2268 1.2741 0.9260 0.9294 0.9277 0.9383
1.06 37.0 2331 1.2747 0.9243 0.9293 0.9268 0.9377
1.0592 38.0 2394 1.2757 0.9262 0.9293 0.9278 0.9389
1.0581 39.0 2457 1.2794 0.9251 0.9294 0.9273 0.9379
1.0574 40.0 2520 1.2765 0.9295 0.9298 0.9296 0.9400
1.0569 41.0 2583 1.2798 0.9253 0.9281 0.9267 0.9381
1.0557 42.0 2646 1.2813 0.9282 0.9294 0.9288 0.9391
1.0562 43.0 2709 1.2792 0.9253 0.9261 0.9257 0.9366
1.056 44.0 2772 1.2797 0.9266 0.9293 0.9280 0.9386
1.0545 45.0 2835 1.2800 0.9265 0.9284 0.9274 0.9382
1.0546 46.0 2898 1.2788 0.9284 0.9299 0.9292 0.9394
1.0544 47.0 2961 1.2794 0.9280 0.9292 0.9286 0.9386
1.0539 48.0 3024 1.2785 0.9285 0.9299 0.9292 0.9393
1.054 49.0 3087 1.2791 0.9284 0.9294 0.9289 0.9390
1.0538 50.0 3150 1.2790 0.9287 0.9301 0.9294 0.9392

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.1.0
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for jamesngai/xlm-roberta-xl-lora4

Finetuned
(6)
this model