update model card README.md
Browse files
README.md
CHANGED
@@ -1,9 +1,121 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
## Training procedure
|
5 |
|
6 |
-
###
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
-
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
base_model: facebook/xlm-roberta-xl
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: xlm-roberta-xl-lora4
|
13 |
+
results: []
|
14 |
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# xlm-roberta-xl-lora4
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [facebook/xlm-roberta-xl](https://huggingface.co/facebook/xlm-roberta-xl) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 1.2790
|
24 |
+
- Precision: 0.9287
|
25 |
+
- Recall: 0.9301
|
26 |
+
- F1: 0.9294
|
27 |
+
- Accuracy: 0.9392
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
## Training procedure
|
42 |
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 0.0001
|
47 |
+
- train_batch_size: 8
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- distributed_type: multi-GPU
|
51 |
+
- num_devices: 8
|
52 |
+
- total_train_batch_size: 64
|
53 |
+
- total_eval_batch_size: 64
|
54 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
55 |
+
- lr_scheduler_type: linear
|
56 |
+
- lr_scheduler_warmup_steps: 63
|
57 |
+
- num_epochs: 50
|
58 |
+
- label_smoothing_factor: 0.15
|
59 |
|
60 |
+
### Training results
|
61 |
+
|
62 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
63 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
64 |
+
| 3.6153 | 1.0 | 63 | 2.8304 | 0.5449 | 0.6685 | 0.6004 | 0.6459 |
|
65 |
+
| 2.4657 | 2.0 | 126 | 2.1379 | 0.7373 | 0.8004 | 0.7676 | 0.8065 |
|
66 |
+
| 1.9364 | 3.0 | 189 | 1.7624 | 0.8330 | 0.8617 | 0.8472 | 0.8740 |
|
67 |
+
| 1.6441 | 4.0 | 252 | 1.5723 | 0.8663 | 0.8816 | 0.8739 | 0.8949 |
|
68 |
+
| 1.494 | 5.0 | 315 | 1.4820 | 0.8779 | 0.8884 | 0.8831 | 0.9020 |
|
69 |
+
| 1.3987 | 6.0 | 378 | 1.4190 | 0.8961 | 0.9012 | 0.8987 | 0.9135 |
|
70 |
+
| 1.3388 | 7.0 | 441 | 1.3814 | 0.9023 | 0.9073 | 0.9048 | 0.9187 |
|
71 |
+
| 1.2947 | 8.0 | 504 | 1.3609 | 0.8976 | 0.9082 | 0.9029 | 0.9200 |
|
72 |
+
| 1.2585 | 9.0 | 567 | 1.3415 | 0.8965 | 0.9113 | 0.9038 | 0.9203 |
|
73 |
+
| 1.2317 | 10.0 | 630 | 1.3246 | 0.9095 | 0.9095 | 0.9095 | 0.9246 |
|
74 |
+
| 1.2081 | 11.0 | 693 | 1.3111 | 0.9095 | 0.9143 | 0.9119 | 0.9268 |
|
75 |
+
| 1.1869 | 12.0 | 756 | 1.3005 | 0.9161 | 0.9194 | 0.9177 | 0.9305 |
|
76 |
+
| 1.1711 | 13.0 | 819 | 1.3085 | 0.9069 | 0.9169 | 0.9119 | 0.9265 |
|
77 |
+
| 1.1557 | 14.0 | 882 | 1.2989 | 0.9191 | 0.9204 | 0.9198 | 0.9309 |
|
78 |
+
| 1.1486 | 15.0 | 945 | 1.2962 | 0.9166 | 0.9185 | 0.9176 | 0.9295 |
|
79 |
+
| 1.1392 | 16.0 | 1008 | 1.2796 | 0.9202 | 0.9228 | 0.9215 | 0.9348 |
|
80 |
+
| 1.127 | 17.0 | 1071 | 1.2830 | 0.9200 | 0.9229 | 0.9214 | 0.9341 |
|
81 |
+
| 1.1224 | 18.0 | 1134 | 1.2814 | 0.9184 | 0.9248 | 0.9216 | 0.9336 |
|
82 |
+
| 1.1146 | 19.0 | 1197 | 1.2775 | 0.9206 | 0.9260 | 0.9233 | 0.9356 |
|
83 |
+
| 1.1081 | 20.0 | 1260 | 1.2798 | 0.9251 | 0.9263 | 0.9257 | 0.9358 |
|
84 |
+
| 1.1006 | 21.0 | 1323 | 1.2756 | 0.9220 | 0.9257 | 0.9238 | 0.9364 |
|
85 |
+
| 1.0972 | 22.0 | 1386 | 1.2755 | 0.9176 | 0.9258 | 0.9217 | 0.9357 |
|
86 |
+
| 1.0926 | 23.0 | 1449 | 1.2795 | 0.9217 | 0.9267 | 0.9242 | 0.9366 |
|
87 |
+
| 1.0898 | 24.0 | 1512 | 1.2830 | 0.9213 | 0.9260 | 0.9236 | 0.9348 |
|
88 |
+
| 1.0847 | 25.0 | 1575 | 1.2749 | 0.9234 | 0.9275 | 0.9255 | 0.9377 |
|
89 |
+
| 1.0818 | 26.0 | 1638 | 1.2806 | 0.9245 | 0.9270 | 0.9257 | 0.9368 |
|
90 |
+
| 1.0796 | 27.0 | 1701 | 1.2760 | 0.9243 | 0.9283 | 0.9263 | 0.9372 |
|
91 |
+
| 1.0753 | 28.0 | 1764 | 1.2776 | 0.9220 | 0.9264 | 0.9242 | 0.9364 |
|
92 |
+
| 1.072 | 29.0 | 1827 | 1.2755 | 0.9265 | 0.9288 | 0.9276 | 0.9388 |
|
93 |
+
| 1.0686 | 30.0 | 1890 | 1.2752 | 0.9240 | 0.9246 | 0.9243 | 0.9365 |
|
94 |
+
| 1.0676 | 31.0 | 1953 | 1.2755 | 0.9271 | 0.9293 | 0.9282 | 0.9386 |
|
95 |
+
| 1.0663 | 32.0 | 2016 | 1.2771 | 0.9261 | 0.9282 | 0.9272 | 0.9383 |
|
96 |
+
| 1.0646 | 33.0 | 2079 | 1.2774 | 0.9235 | 0.9283 | 0.9259 | 0.9370 |
|
97 |
+
| 1.0641 | 34.0 | 2142 | 1.2710 | 0.9274 | 0.9313 | 0.9294 | 0.9398 |
|
98 |
+
| 1.0648 | 35.0 | 2205 | 1.2759 | 0.9259 | 0.9284 | 0.9271 | 0.9387 |
|
99 |
+
| 1.0623 | 36.0 | 2268 | 1.2741 | 0.9260 | 0.9294 | 0.9277 | 0.9383 |
|
100 |
+
| 1.06 | 37.0 | 2331 | 1.2747 | 0.9243 | 0.9293 | 0.9268 | 0.9377 |
|
101 |
+
| 1.0592 | 38.0 | 2394 | 1.2757 | 0.9262 | 0.9293 | 0.9278 | 0.9389 |
|
102 |
+
| 1.0581 | 39.0 | 2457 | 1.2794 | 0.9251 | 0.9294 | 0.9273 | 0.9379 |
|
103 |
+
| 1.0574 | 40.0 | 2520 | 1.2765 | 0.9295 | 0.9298 | 0.9296 | 0.9400 |
|
104 |
+
| 1.0569 | 41.0 | 2583 | 1.2798 | 0.9253 | 0.9281 | 0.9267 | 0.9381 |
|
105 |
+
| 1.0557 | 42.0 | 2646 | 1.2813 | 0.9282 | 0.9294 | 0.9288 | 0.9391 |
|
106 |
+
| 1.0562 | 43.0 | 2709 | 1.2792 | 0.9253 | 0.9261 | 0.9257 | 0.9366 |
|
107 |
+
| 1.056 | 44.0 | 2772 | 1.2797 | 0.9266 | 0.9293 | 0.9280 | 0.9386 |
|
108 |
+
| 1.0545 | 45.0 | 2835 | 1.2800 | 0.9265 | 0.9284 | 0.9274 | 0.9382 |
|
109 |
+
| 1.0546 | 46.0 | 2898 | 1.2788 | 0.9284 | 0.9299 | 0.9292 | 0.9394 |
|
110 |
+
| 1.0544 | 47.0 | 2961 | 1.2794 | 0.9280 | 0.9292 | 0.9286 | 0.9386 |
|
111 |
+
| 1.0539 | 48.0 | 3024 | 1.2785 | 0.9285 | 0.9299 | 0.9292 | 0.9393 |
|
112 |
+
| 1.054 | 49.0 | 3087 | 1.2791 | 0.9284 | 0.9294 | 0.9289 | 0.9390 |
|
113 |
+
| 1.0538 | 50.0 | 3150 | 1.2790 | 0.9287 | 0.9301 | 0.9294 | 0.9392 |
|
114 |
+
|
115 |
+
|
116 |
+
### Framework versions
|
117 |
|
118 |
+
- Transformers 4.31.0
|
119 |
+
- Pytorch 2.1.0
|
120 |
+
- Datasets 2.14.5
|
121 |
+
- Tokenizers 0.13.3
|