File size: 28,013 Bytes
7416041
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
Microsoft Windows [η‰ˆζœ¬ 10.0.19045.4170]
(c) Microsoft Corporationγ€‚δΏη•™ζ‰€ζœ‰ζƒεˆ©γ€‚

C:\Users\Lenovo>cd C:\Users\Lenovo\Desktop\wxy\CPT-master\finetune\generation

C:\Users\Lenovo\Desktop\wxy\CPT-master\finetune\generation>python run_gen.py --model_path C:\Users\Lenovo\.cache\huggingface\hub\models--fnlp--cpt-large\snapshots\f07323ad5818364d47fc17cc4088072cd2f5f46d --dataset adgen --data_dir demo_data
train
validation
test
03/22/2024 09:51:20 - WARNING - __main__ -   Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
03/22/2024 09:51:20 - INFO - __main__ -   Training/evaluation parameters Seq2SeqTrainingArguments(
_n_gpu=1,
accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True},
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_persistent_workers=False,
dataloader_pin_memory=True,
dataloader_prefetch_factor=None,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
dispatch_batches=None,
do_eval=True,
do_predict=True,
do_train=True,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=epoch,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
generation_config=None,
generation_max_length=None,
generation_num_beams=None,
gradient_accumulation_steps=1,
gradient_checkpointing=False,
gradient_checkpointing_kwargs=None,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
include_num_input_tokens_seen=False,
include_tokens_per_second=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=2e-05,
length_column_name=length,
load_best_model_at_end=False,
local_rank=0,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=output/adgen/6\runs\Mar22_09-51-19_DESKTOP-PC6Q6P1,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=500,
logging_strategy=steps,
lr_scheduler_kwargs={},
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
neftune_noise_alpha=None,
no_cuda=False,
num_train_epochs=10.0,
optim=adamw_torch,
optim_args=None,
output_dir=output/adgen/6,
overwrite_output_dir=True,
past_index=-1,
per_device_eval_batch_size=6,
per_device_train_batch_size=6,
predict_with_generate=True,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=[],
resume_from_checkpoint=None,
run_name=output/adgen/6,
save_on_each_node=False,
save_only_model=False,
save_safetensors=True,
save_steps=500,
save_strategy=no,
save_total_limit=None,
seed=6000,
skip_memory_metrics=True,
sortish_sampler=False,
split_batches=None,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
)
loading file vocab.txt
loading file added_tokens.json
loading file special_tokens_map.json
loading file tokenizer_config.json
loading file tokenizer.json
loading configuration file C:\Users\Lenovo\.cache\huggingface\hub\models--fnlp--cpt-large\snapshots\f07323ad5818364d47fc17cc4088072cd2f5f46d\config.json
Model config BartConfig {
  "_name_or_path": "C:\\Users\\Lenovo\\.cache\\huggingface\\hub\\models--fnlp--cpt-large\\snapshots\\f07323ad5818364d47fc17cc4088072cd2f5f46d",
  "activation_dropout": 0.1,
  "activation_function": "gelu",
  "add_bias_logits": false,
  "add_final_layer_norm": false,
  "architectures": [
    "BartForConditionalGeneration"
  ],
  "attention_dropout": 0.1,
  "bos_token_id": 101,
  "classif_dropout": 0.1,
  "classifier_dropout": 0.0,
  "d_model": 1024,
  "decoder_attention_heads": 16,
  "decoder_ffn_dim": 4096,
  "decoder_layerdrop": 0.0,
  "decoder_layers": 4,
  "decoder_start_token_id": 102,
  "dropout": 0.1,
  "early_stopping": true,
  "encoder_attention_heads": 16,
  "encoder_ffn_dim": 4096,
  "encoder_layerdrop": 0.0,
  "encoder_layers": 24,
  "eos_token_id": 102,
  "forced_eos_token_id": 102,
  "gradient_checkpointing": false,
  "id2label": {
    "0": "LABEL_0",
    "1": "LABEL_1",
    "2": "LABEL_2"
  },
  "init_std": 0.02,
  "is_encoder_decoder": true,
  "label2id": {
    "LABEL_0": 0,
    "LABEL_1": 1,
    "LABEL_2": 2
  },
  "max_position_embeddings": 1024,
  "model_type": "bart",
  "no_repeat_ngram_size": 3,
  "normalize_before": false,
  "normalize_embedding": true,
  "num_beams": 4,
  "num_hidden_layers": 24,
  "pad_token_id": 0,
  "scale_embedding": false,
  "task_specific_params": {
    "summarization": {
      "length_penalty": 1.0,
      "max_length": 128,
      "min_length": 12,
      "num_beams": 4
    },
    "summarization_cnn": {
      "length_penalty": 2.0,
      "max_length": 142,
      "min_length": 56,
      "num_beams": 4
    },
    "summarization_xsum": {
      "length_penalty": 1.0,
      "max_length": 62,
      "min_length": 11,
      "num_beams": 6
    }
  },
  "tokenizer_class": "BertTokenizer",
  "transformers_version": "4.38.1",
  "use_cache": true,
  "vocab_size": 51271
}

loading configuration file C:\Users\Lenovo\.cache\huggingface\hub\models--fnlp--cpt-large\snapshots\f07323ad5818364d47fc17cc4088072cd2f5f46d\config.json
Model config BartConfig {
  "activation_dropout": 0.1,
  "activation_function": "gelu",
  "add_bias_logits": false,
  "add_final_layer_norm": false,
  "architectures": [
    "BartForConditionalGeneration"
  ],
  "attention_dropout": 0.1,
  "bos_token_id": 101,
  "classif_dropout": 0.1,
  "classifier_dropout": 0.0,
  "d_model": 1024,
  "decoder_attention_heads": 16,
  "decoder_ffn_dim": 4096,
  "decoder_layerdrop": 0.0,
  "decoder_layers": 4,
  "decoder_start_token_id": 102,
  "dropout": 0.1,
  "early_stopping": true,
  "encoder_attention_heads": 16,
  "encoder_ffn_dim": 4096,
  "encoder_layerdrop": 0.0,
  "encoder_layers": 24,
  "eos_token_id": 102,
  "forced_eos_token_id": 102,
  "gradient_checkpointing": false,
  "id2label": {
    "0": "LABEL_0",
    "1": "LABEL_1",
    "2": "LABEL_2"
  },
  "init_std": 0.02,
  "is_encoder_decoder": true,
  "label2id": {
    "LABEL_0": 0,
    "LABEL_1": 1,
    "LABEL_2": 2
  },
  "max_position_embeddings": 1024,
  "model_type": "bart",
  "no_repeat_ngram_size": 3,
  "normalize_before": false,
  "normalize_embedding": true,
  "num_beams": 4,
  "num_hidden_layers": 24,
  "pad_token_id": 0,
  "scale_embedding": false,
  "task_specific_params": {
    "summarization": {
      "length_penalty": 1.0,
      "max_length": 128,
      "min_length": 12,
      "num_beams": 4
    },
    "summarization_cnn": {
      "length_penalty": 2.0,
      "max_length": 142,
      "min_length": 56,
      "num_beams": 4
    },
    "summarization_xsum": {
      "length_penalty": 1.0,
      "max_length": 62,
      "min_length": 11,
      "num_beams": 6
    }
  },
  "tokenizer_class": "BertTokenizer",
  "transformers_version": "4.38.1",
  "use_cache": true,
  "vocab_size": 51271
}

loading weights file C:\Users\Lenovo\.cache\huggingface\hub\models--fnlp--cpt-large\snapshots\f07323ad5818364d47fc17cc4088072cd2f5f46d\model.safetensors
Generate config GenerationConfig {
  "bos_token_id": 101,
  "decoder_start_token_id": 102,
  "early_stopping": true,
  "eos_token_id": 102,
  "forced_eos_token_id": 102,
  "no_repeat_ngram_size": 3,
  "num_beams": 4,
  "pad_token_id": 0
}

All model checkpoint weights were used when initializing CPTForConditionalGeneration.

All the weights of CPTForConditionalGeneration were initialized from the model checkpoint at C:\Users\Lenovo\.cache\huggingface\hub\models--fnlp--cpt-large\snapshots\f07323ad5818364d47fc17cc4088072cd2f5f46d.
If your task is similar to the task the model of the checkpoint was trained on, you can already use CPTForConditionalGeneration for predictions without further training.
Generation config file not found, using a generation config created from the model config.
Map:   0%|                                                                             | 0/3290 [00:00<?, ? examples/s]D:\Python\lib\site-packages\transformers\tokenization_utils_base.py:3892: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.
  warnings.warn(
Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3290/3290 [00:11<00:00, 274.45 examples/s]
Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1098/1098 [00:03<00:00, 293.11 examples/s]
Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1100/1100 [00:03<00:00, 284.09 examples/s]
The following columns in the training set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running training *****
  Num examples = 3,290
  Num Epochs = 10
  Instantaneous batch size per device = 6
  Total train batch size (w. parallel, distributed & accumulation) = 6
  Gradient Accumulation steps = 1
  Total optimization steps = 5,490
  Number of trainable parameters = 424,102,912
{'loss': 1.1409, 'grad_norm': 2.757542133331299, 'learning_rate': 1.817850637522769e-05, 'epoch': 0.91}
 10%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰                                                                       | 549/5490 [05:02<38:38,  2.13it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Evaluation *****
  Num examples = 1098
  Batch size = 6
Generate config GenerationConfig {
  "bos_token_id": 101,
  "decoder_start_token_id": 102,
  "early_stopping": true,
  "eos_token_id": 102,
  "forced_eos_token_id": 102,
  "max_length": 512,
  "no_repeat_ngram_size": 3,
  "num_beams": 4,
  "pad_token_id": 0
}

D:\Python\lib\site-packages\transformers\generation\utils.py:1339: UserWarning: You have modified the pretrained model configuration to control generation. This is a deprecated strategy to control generation and will be removed soon, in a future version. Please use and modify the model generation configuration (see https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )
  warnings.warn(
{'eval_loss': 0.6597685217857361, 'eval_rouge-1': 46.5406, 'eval_rouge-2': 22.9769, 'eval_rouge-l': 32.9451, 'eval_gen_len': 140.5492, 'eval_runtime': 2725.7664, 'eval_samples_per_second': 0.403, 'eval_steps_per_second': 0.067, 'epoch': 1.0}
 10%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰                                                                       | 549/5490 [50:28<38:38,  2.13it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Prediction *****
  Num examples = 1100
  Batch size = 6
{'loss': 0.6419, 'grad_norm': 3.1357340812683105, 'learning_rate': 1.6357012750455374e-05, 'epoch': 1.82}
 20%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–                                                            | 1098/5490 [1:41:48<35:16,  2.08it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Evaluation *****
  Num examples = 1098
  Batch size = 6
{'eval_loss': 0.5546132922172546, 'eval_rouge-1': 48.0276, 'eval_rouge-2': 22.0229, 'eval_rouge-l': 32.1636, 'eval_gen_len': 196.4153, 'eval_runtime': 3772.7644, 'eval_samples_per_second': 0.291, 'eval_steps_per_second': 0.049, 'epoch': 2.0}
 20%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–                                                            | 1098/5490 [2:44:41<35:16,  2.08it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Prediction *****
  Num examples = 1100
  Batch size = 6
{'loss': 0.5212, 'grad_norm': 1.975117802619934, 'learning_rate': 1.4535519125683062e-05, 'epoch': 2.73}
 30%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š                                                     | 1647/5490 [3:53:14<29:42,  2.16it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Evaluation *****
  Num examples = 1098
  Batch size = 6
{'eval_loss': 0.5185256004333496, 'eval_rouge-1': 50.9653, 'eval_rouge-2': 25.9311, 'eval_rouge-l': 35.8033, 'eval_gen_len': 159.2368, 'eval_runtime': 2838.4663, 'eval_samples_per_second': 0.387, 'eval_steps_per_second': 0.064, 'epoch': 3.0}
 30%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š                                                     | 1647/5490 [4:40:33<29:42,  2.16it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Prediction *****
  Num examples = 1100
  Batch size = 6
{'loss': 0.4477, 'grad_norm': 2.144341468811035, 'learning_rate': 1.2714025500910747e-05, 'epoch': 3.64}
 40%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–                                             | 2196/5490 [5:33:59<26:57,  2.04it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Evaluation *****
  Num examples = 1098
  Batch size = 6
{'eval_loss': 0.49395063519477844, 'eval_rouge-1': 48.9221, 'eval_rouge-2': 23.9901, 'eval_rouge-l': 33.7623, 'eval_gen_len': 168.326, 'eval_runtime': 3077.747, 'eval_samples_per_second': 0.357, 'eval_steps_per_second': 0.059, 'epoch': 4.0}
 40%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–                                             | 2196/5490 [6:25:17<26:57,  2.04it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Prediction *****
  Num examples = 1100
  Batch size = 6
{'loss': 0.3979, 'grad_norm': 2.392031669616699, 'learning_rate': 1.0892531876138435e-05, 'epoch': 4.55}
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                      | 2745/5490 [7:21:08<22:34,  2.03it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Evaluation *****
  Num examples = 1098
  Batch size = 6
{'eval_loss': 0.4893759787082672, 'eval_rouge-1': 50.0387, 'eval_rouge-2': 24.3981, 'eval_rouge-l': 34.4437, 'eval_gen_len': 175.8224, 'eval_runtime': 3577.8144, 'eval_samples_per_second': 0.307, 'eval_steps_per_second': 0.051, 'epoch': 5.0}
 50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                                      | 2745/5490 [8:20:46<22:34,  2.03it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Prediction *****
  Num examples = 1100
  Batch size = 6
{'loss': 0.3643, 'grad_norm': 2.4226653575897217, 'learning_rate': 9.071038251366122e-06, 'epoch': 5.46}
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ                              | 3294/5490 [9:25:41<16:56,  2.16it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Evaluation *****
  Num examples = 1098
  Batch size = 6
{'eval_loss': 0.48532548546791077, 'eval_rouge-1': 49.8422, 'eval_rouge-2': 25.0516, 'eval_rouge-l': 34.9932, 'eval_gen_len': 164.6248, 'eval_runtime': 3032.1092, 'eval_samples_per_second': 0.362, 'eval_steps_per_second': 0.06, 'epoch': 6.0}
 60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ                              | 3294/5490 [10:16:13<16:56,  2.16it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Prediction *****
  Num examples = 1100
  Batch size = 6
{'loss': 0.3238, 'grad_norm': 2.65415620803833, 'learning_rate': 7.249544626593807e-06, 'epoch': 6.38}
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ                      | 3843/5490 [11:08:06<12:34,  2.18it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Evaluation *****
  Num examples = 1098
  Batch size = 6
{'eval_loss': 0.4873065650463104, 'eval_rouge-1': 50.8821, 'eval_rouge-2': 26.3218, 'eval_rouge-l': 36.3449, 'eval_gen_len': 160.2577, 'eval_runtime': 2730.9734, 'eval_samples_per_second': 0.402, 'eval_steps_per_second': 0.067, 'epoch': 7.0}
 70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ                      | 3843/5490 [11:53:37<12:34,  2.18it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Prediction *****
  Num examples = 1100
  Batch size = 6
{'loss': 0.2993, 'grad_norm': 3.1916089057922363, 'learning_rate': 5.428051001821493e-06, 'epoch': 7.29}
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ               | 4392/5490 [12:45:34<08:18,  2.20it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Evaluation *****
  Num examples = 1098
  Batch size = 6
{'eval_loss': 0.4905695617198944, 'eval_rouge-1': 50.4851, 'eval_rouge-2': 25.7187, 'eval_rouge-l': 35.9106, 'eval_gen_len': 166.0501, 'eval_runtime': 2922.2897, 'eval_samples_per_second': 0.376, 'eval_steps_per_second': 0.063, 'epoch': 8.0}
 80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ               | 4392/5490 [13:34:16<08:18,  2.20it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Prediction *****
  Num examples = 1100
  Batch size = 6
{'loss': 0.2735, 'grad_norm': 2.4203264713287354, 'learning_rate': 3.6065573770491806e-06, 'epoch': 8.2}
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ       | 4941/5490 [14:28:33<04:10,  2.19it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Evaluation *****
  Num examples = 1098
  Batch size = 6
{'eval_loss': 0.4907337725162506, 'eval_rouge-1': 51.017, 'eval_rouge-2': 26.0933, 'eval_rouge-l': 36.1259, 'eval_gen_len': 167.5301, 'eval_runtime': 3054.2577, 'eval_samples_per_second': 0.359, 'eval_steps_per_second': 0.06, 'epoch': 9.0}
 90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ       | 4941/5490 [15:19:27<04:10,  2.19it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Prediction *****
  Num examples = 1100
  Batch size = 6
{'loss': 0.2645, 'grad_norm': 3.681400775909424, 'learning_rate': 1.7850637522768672e-06, 'epoch': 9.11}
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5490/5490 [16:15:41<00:00,  2.20it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Evaluation *****
  Num examples = 1098
  Batch size = 6
{'eval_loss': 0.4916660189628601, 'eval_rouge-1': 51.2775, 'eval_rouge-2': 26.6234, 'eval_rouge-l': 36.7381, 'eval_gen_len': 163.3725, 'eval_runtime': 2893.3367, 'eval_samples_per_second': 0.379, 'eval_steps_per_second': 0.063, 'epoch': 10.0}
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5490/5490 [17:03:54<00:00,  2.20it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Prediction *****
  Num examples = 1100
  Batch size = 6


Training completed. Do not forget to share your model on huggingface.co/models =)


{'train_runtime': 64358.151, 'train_samples_per_second': 0.511, 'train_steps_per_second': 0.085, 'train_loss': 0.4479398911550831, 'epoch': 10.0}
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5490/5490 [17:52:38<00:00, 11.72s/it]
Saving model checkpoint to output/adgen/6
Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.
Non-default generation parameters: {'max_length': 512, 'early_stopping': True, 'num_beams': 4, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 102}
Configuration saved in output/adgen/6\config.json
Configuration saved in output/adgen/6\generation_config.json
Removed shared tensor {'model.shared.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight'} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading
Model weights saved in output/adgen/6\model.safetensors
tokenizer config file saved in output/adgen/6\tokenizer_config.json
Special tokens file saved in output/adgen/6\special_tokens_map.json
***** train metrics *****
  epoch                    =        10.0
  train_loss               =      0.4479
  train_runtime            = 17:52:38.15
  train_samples            =        3290
  train_samples_per_second =       0.511
  train_steps_per_second   =       0.085
The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`,  you can safely ignore this message.
***** Running Prediction *****
  Num examples = 1100
  Batch size = 6
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 184/184 [48:39<00:00, 15.87s/it]

C:\Users\Lenovo\Desktop\wxy\CPT-master\finetune\generation>