jaong's picture
Upload 12 files
7416041 verified
raw
history blame
28 kB
Microsoft Windows [η‰ˆζœ¬ 10.0.19045.4170]
(c) Microsoft Corporationγ€‚δΏη•™ζ‰€ζœ‰ζƒεˆ©γ€‚
C:\Users\Lenovo>cd C:\Users\Lenovo\Desktop\wxy\CPT-master\finetune\generation
C:\Users\Lenovo\Desktop\wxy\CPT-master\finetune\generation>python run_gen.py --model_path C:\Users\Lenovo\.cache\huggingface\hub\models--fnlp--cpt-large\snapshots\f07323ad5818364d47fc17cc4088072cd2f5f46d --dataset adgen --data_dir demo_data
train
validation
test
03/22/2024 09:51:20 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1distributed training: True, 16-bits training: False
03/22/2024 09:51:20 - INFO - __main__ - Training/evaluation parameters Seq2SeqTrainingArguments(
_n_gpu=1,
accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True},
adafactor=False,
adam_beta1=0.9,
adam_beta2=0.999,
adam_epsilon=1e-08,
auto_find_batch_size=False,
bf16=False,
bf16_full_eval=False,
data_seed=None,
dataloader_drop_last=False,
dataloader_num_workers=0,
dataloader_persistent_workers=False,
dataloader_pin_memory=True,
dataloader_prefetch_factor=None,
ddp_backend=None,
ddp_broadcast_buffers=None,
ddp_bucket_cap_mb=None,
ddp_find_unused_parameters=None,
ddp_timeout=1800,
debug=[],
deepspeed=None,
disable_tqdm=False,
dispatch_batches=None,
do_eval=True,
do_predict=True,
do_train=True,
eval_accumulation_steps=None,
eval_delay=0,
eval_steps=None,
evaluation_strategy=epoch,
fp16=False,
fp16_backend=auto,
fp16_full_eval=False,
fp16_opt_level=O1,
fsdp=[],
fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False},
fsdp_min_num_params=0,
fsdp_transformer_layer_cls_to_wrap=None,
full_determinism=False,
generation_config=None,
generation_max_length=None,
generation_num_beams=None,
gradient_accumulation_steps=1,
gradient_checkpointing=False,
gradient_checkpointing_kwargs=None,
greater_is_better=None,
group_by_length=False,
half_precision_backend=auto,
hub_always_push=False,
hub_model_id=None,
hub_private_repo=False,
hub_strategy=every_save,
hub_token=<HUB_TOKEN>,
ignore_data_skip=False,
include_inputs_for_metrics=False,
include_num_input_tokens_seen=False,
include_tokens_per_second=False,
jit_mode_eval=False,
label_names=None,
label_smoothing_factor=0.0,
learning_rate=2e-05,
length_column_name=length,
load_best_model_at_end=False,
local_rank=0,
log_level=passive,
log_level_replica=warning,
log_on_each_node=True,
logging_dir=output/adgen/6\runs\Mar22_09-51-19_DESKTOP-PC6Q6P1,
logging_first_step=False,
logging_nan_inf_filter=True,
logging_steps=500,
logging_strategy=steps,
lr_scheduler_kwargs={},
lr_scheduler_type=linear,
max_grad_norm=1.0,
max_steps=-1,
metric_for_best_model=None,
mp_parameters=,
neftune_noise_alpha=None,
no_cuda=False,
num_train_epochs=10.0,
optim=adamw_torch,
optim_args=None,
output_dir=output/adgen/6,
overwrite_output_dir=True,
past_index=-1,
per_device_eval_batch_size=6,
per_device_train_batch_size=6,
predict_with_generate=True,
prediction_loss_only=False,
push_to_hub=False,
push_to_hub_model_id=None,
push_to_hub_organization=None,
push_to_hub_token=<PUSH_TO_HUB_TOKEN>,
ray_scope=last,
remove_unused_columns=True,
report_to=[],
resume_from_checkpoint=None,
run_name=output/adgen/6,
save_on_each_node=False,
save_only_model=False,
save_safetensors=True,
save_steps=500,
save_strategy=no,
save_total_limit=None,
seed=6000,
skip_memory_metrics=True,
sortish_sampler=False,
split_batches=None,
tf32=None,
torch_compile=False,
torch_compile_backend=None,
torch_compile_mode=None,
torchdynamo=None,
tpu_metrics_debug=False,
tpu_num_cores=None,
use_cpu=False,
use_ipex=False,
use_legacy_prediction_loop=False,
use_mps_device=False,
warmup_ratio=0.0,
warmup_steps=0,
weight_decay=0.0,
)
loading file vocab.txt
loading file added_tokens.json
loading file special_tokens_map.json
loading file tokenizer_config.json
loading file tokenizer.json
loading configuration file C:\Users\Lenovo\.cache\huggingface\hub\models--fnlp--cpt-large\snapshots\f07323ad5818364d47fc17cc4088072cd2f5f46d\config.json
Model config BartConfig {
"_name_or_path": "C:\\Users\\Lenovo\\.cache\\huggingface\\hub\\models--fnlp--cpt-large\\snapshots\\f07323ad5818364d47fc17cc4088072cd2f5f46d",
"activation_dropout": 0.1,
"activation_function": "gelu",
"add_bias_logits": false,
"add_final_layer_norm": false,
"architectures": [
"BartForConditionalGeneration"
],
"attention_dropout": 0.1,
"bos_token_id": 101,
"classif_dropout": 0.1,
"classifier_dropout": 0.0,
"d_model": 1024,
"decoder_attention_heads": 16,
"decoder_ffn_dim": 4096,
"decoder_layerdrop": 0.0,
"decoder_layers": 4,
"decoder_start_token_id": 102,
"dropout": 0.1,
"early_stopping": true,
"encoder_attention_heads": 16,
"encoder_ffn_dim": 4096,
"encoder_layerdrop": 0.0,
"encoder_layers": 24,
"eos_token_id": 102,
"forced_eos_token_id": 102,
"gradient_checkpointing": false,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1",
"2": "LABEL_2"
},
"init_std": 0.02,
"is_encoder_decoder": true,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1,
"LABEL_2": 2
},
"max_position_embeddings": 1024,
"model_type": "bart",
"no_repeat_ngram_size": 3,
"normalize_before": false,
"normalize_embedding": true,
"num_beams": 4,
"num_hidden_layers": 24,
"pad_token_id": 0,
"scale_embedding": false,
"task_specific_params": {
"summarization": {
"length_penalty": 1.0,
"max_length": 128,
"min_length": 12,
"num_beams": 4
},
"summarization_cnn": {
"length_penalty": 2.0,
"max_length": 142,
"min_length": 56,
"num_beams": 4
},
"summarization_xsum": {
"length_penalty": 1.0,
"max_length": 62,
"min_length": 11,
"num_beams": 6
}
},
"tokenizer_class": "BertTokenizer",
"transformers_version": "4.38.1",
"use_cache": true,
"vocab_size": 51271
}
loading configuration file C:\Users\Lenovo\.cache\huggingface\hub\models--fnlp--cpt-large\snapshots\f07323ad5818364d47fc17cc4088072cd2f5f46d\config.json
Model config BartConfig {
"activation_dropout": 0.1,
"activation_function": "gelu",
"add_bias_logits": false,
"add_final_layer_norm": false,
"architectures": [
"BartForConditionalGeneration"
],
"attention_dropout": 0.1,
"bos_token_id": 101,
"classif_dropout": 0.1,
"classifier_dropout": 0.0,
"d_model": 1024,
"decoder_attention_heads": 16,
"decoder_ffn_dim": 4096,
"decoder_layerdrop": 0.0,
"decoder_layers": 4,
"decoder_start_token_id": 102,
"dropout": 0.1,
"early_stopping": true,
"encoder_attention_heads": 16,
"encoder_ffn_dim": 4096,
"encoder_layerdrop": 0.0,
"encoder_layers": 24,
"eos_token_id": 102,
"forced_eos_token_id": 102,
"gradient_checkpointing": false,
"id2label": {
"0": "LABEL_0",
"1": "LABEL_1",
"2": "LABEL_2"
},
"init_std": 0.02,
"is_encoder_decoder": true,
"label2id": {
"LABEL_0": 0,
"LABEL_1": 1,
"LABEL_2": 2
},
"max_position_embeddings": 1024,
"model_type": "bart",
"no_repeat_ngram_size": 3,
"normalize_before": false,
"normalize_embedding": true,
"num_beams": 4,
"num_hidden_layers": 24,
"pad_token_id": 0,
"scale_embedding": false,
"task_specific_params": {
"summarization": {
"length_penalty": 1.0,
"max_length": 128,
"min_length": 12,
"num_beams": 4
},
"summarization_cnn": {
"length_penalty": 2.0,
"max_length": 142,
"min_length": 56,
"num_beams": 4
},
"summarization_xsum": {
"length_penalty": 1.0,
"max_length": 62,
"min_length": 11,
"num_beams": 6
}
},
"tokenizer_class": "BertTokenizer",
"transformers_version": "4.38.1",
"use_cache": true,
"vocab_size": 51271
}
loading weights file C:\Users\Lenovo\.cache\huggingface\hub\models--fnlp--cpt-large\snapshots\f07323ad5818364d47fc17cc4088072cd2f5f46d\model.safetensors
Generate config GenerationConfig {
"bos_token_id": 101,
"decoder_start_token_id": 102,
"early_stopping": true,
"eos_token_id": 102,
"forced_eos_token_id": 102,
"no_repeat_ngram_size": 3,
"num_beams": 4,
"pad_token_id": 0
}
All model checkpoint weights were used when initializing CPTForConditionalGeneration.
All the weights of CPTForConditionalGeneration were initialized from the model checkpoint at C:\Users\Lenovo\.cache\huggingface\hub\models--fnlp--cpt-large\snapshots\f07323ad5818364d47fc17cc4088072cd2f5f46d.
If your task is similar to the task the model of the checkpoint was trained on, you can already use CPTForConditionalGeneration for predictions without further training.
Generation config file not found, using a generation config created from the model config.
Map: 0%| | 0/3290 [00:00<?, ? examples/s]D:\Python\lib\site-packages\transformers\tokenization_utils_base.py:3892: UserWarning: `as_target_tokenizer` is deprecated and will be removed in v5 of Transformers. You can tokenize your labels by using the argument `text_target` of the regular `__call__` method (either in the same call as your input texts if you use the same keyword arguments, or in a separate call.
warnings.warn(
Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3290/3290 [00:11<00:00, 274.45 examples/s]
Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1098/1098 [00:03<00:00, 293.11 examples/s]
Map: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1100/1100 [00:03<00:00, 284.09 examples/s]
The following columns in the training set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running training *****
Num examples = 3,290
Num Epochs = 10
Instantaneous batch size per device = 6
Total train batch size (w. parallel, distributed & accumulation) = 6
Gradient Accumulation steps = 1
Total optimization steps = 5,490
Number of trainable parameters = 424,102,912
{'loss': 1.1409, 'grad_norm': 2.757542133331299, 'learning_rate': 1.817850637522769e-05, 'epoch': 0.91}
10%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 549/5490 [05:02<38:38, 2.13it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Evaluation *****
Num examples = 1098
Batch size = 6
Generate config GenerationConfig {
"bos_token_id": 101,
"decoder_start_token_id": 102,
"early_stopping": true,
"eos_token_id": 102,
"forced_eos_token_id": 102,
"max_length": 512,
"no_repeat_ngram_size": 3,
"num_beams": 4,
"pad_token_id": 0
}
D:\Python\lib\site-packages\transformers\generation\utils.py:1339: UserWarning: You have modified the pretrained model configuration to control generation. This is a deprecated strategy to control generation and will be removed soon, in a future version. Please use and modify the model generation configuration (see https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )
warnings.warn(
{'eval_loss': 0.6597685217857361, 'eval_rouge-1': 46.5406, 'eval_rouge-2': 22.9769, 'eval_rouge-l': 32.9451, 'eval_gen_len': 140.5492, 'eval_runtime': 2725.7664, 'eval_samples_per_second': 0.403, 'eval_steps_per_second': 0.067, 'epoch': 1.0}
10%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–‰ | 549/5490 [50:28<38:38, 2.13it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Prediction *****
Num examples = 1100
Batch size = 6
{'loss': 0.6419, 'grad_norm': 3.1357340812683105, 'learning_rate': 1.6357012750455374e-05, 'epoch': 1.82}
20%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1098/5490 [1:41:48<35:16, 2.08it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Evaluation *****
Num examples = 1098
Batch size = 6
{'eval_loss': 0.5546132922172546, 'eval_rouge-1': 48.0276, 'eval_rouge-2': 22.0229, 'eval_rouge-l': 32.1636, 'eval_gen_len': 196.4153, 'eval_runtime': 3772.7644, 'eval_samples_per_second': 0.291, 'eval_steps_per_second': 0.049, 'epoch': 2.0}
20%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 1098/5490 [2:44:41<35:16, 2.08it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Prediction *****
Num examples = 1100
Batch size = 6
{'loss': 0.5212, 'grad_norm': 1.975117802619934, 'learning_rate': 1.4535519125683062e-05, 'epoch': 2.73}
30%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1647/5490 [3:53:14<29:42, 2.16it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Evaluation *****
Num examples = 1098
Batch size = 6
{'eval_loss': 0.5185256004333496, 'eval_rouge-1': 50.9653, 'eval_rouge-2': 25.9311, 'eval_rouge-l': 35.8033, 'eval_gen_len': 159.2368, 'eval_runtime': 2838.4663, 'eval_samples_per_second': 0.387, 'eval_steps_per_second': 0.064, 'epoch': 3.0}
30%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Š | 1647/5490 [4:40:33<29:42, 2.16it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Prediction *****
Num examples = 1100
Batch size = 6
{'loss': 0.4477, 'grad_norm': 2.144341468811035, 'learning_rate': 1.2714025500910747e-05, 'epoch': 3.64}
40%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 2196/5490 [5:33:59<26:57, 2.04it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Evaluation *****
Num examples = 1098
Batch size = 6
{'eval_loss': 0.49395063519477844, 'eval_rouge-1': 48.9221, 'eval_rouge-2': 23.9901, 'eval_rouge-l': 33.7623, 'eval_gen_len': 168.326, 'eval_runtime': 3077.747, 'eval_samples_per_second': 0.357, 'eval_steps_per_second': 0.059, 'epoch': 4.0}
40%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ– | 2196/5490 [6:25:17<26:57, 2.04it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Prediction *****
Num examples = 1100
Batch size = 6
{'loss': 0.3979, 'grad_norm': 2.392031669616699, 'learning_rate': 1.0892531876138435e-05, 'epoch': 4.55}
50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 2745/5490 [7:21:08<22:34, 2.03it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Evaluation *****
Num examples = 1098
Batch size = 6
{'eval_loss': 0.4893759787082672, 'eval_rouge-1': 50.0387, 'eval_rouge-2': 24.3981, 'eval_rouge-l': 34.4437, 'eval_gen_len': 175.8224, 'eval_runtime': 3577.8144, 'eval_samples_per_second': 0.307, 'eval_steps_per_second': 0.051, 'epoch': 5.0}
50%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 2745/5490 [8:20:46<22:34, 2.03it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Prediction *****
Num examples = 1100
Batch size = 6
{'loss': 0.3643, 'grad_norm': 2.4226653575897217, 'learning_rate': 9.071038251366122e-06, 'epoch': 5.46}
60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 3294/5490 [9:25:41<16:56, 2.16it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Evaluation *****
Num examples = 1098
Batch size = 6
{'eval_loss': 0.48532548546791077, 'eval_rouge-1': 49.8422, 'eval_rouge-2': 25.0516, 'eval_rouge-l': 34.9932, 'eval_gen_len': 164.6248, 'eval_runtime': 3032.1092, 'eval_samples_per_second': 0.362, 'eval_steps_per_second': 0.06, 'epoch': 6.0}
60%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 3294/5490 [10:16:13<16:56, 2.16it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Prediction *****
Num examples = 1100
Batch size = 6
{'loss': 0.3238, 'grad_norm': 2.65415620803833, 'learning_rate': 7.249544626593807e-06, 'epoch': 6.38}
70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 3843/5490 [11:08:06<12:34, 2.18it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Evaluation *****
Num examples = 1098
Batch size = 6
{'eval_loss': 0.4873065650463104, 'eval_rouge-1': 50.8821, 'eval_rouge-2': 26.3218, 'eval_rouge-l': 36.3449, 'eval_gen_len': 160.2577, 'eval_runtime': 2730.9734, 'eval_samples_per_second': 0.402, 'eval_steps_per_second': 0.067, 'epoch': 7.0}
70%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 3843/5490 [11:53:37<12:34, 2.18it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Prediction *****
Num examples = 1100
Batch size = 6
{'loss': 0.2993, 'grad_norm': 3.1916089057922363, 'learning_rate': 5.428051001821493e-06, 'epoch': 7.29}
80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 4392/5490 [12:45:34<08:18, 2.20it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Evaluation *****
Num examples = 1098
Batch size = 6
{'eval_loss': 0.4905695617198944, 'eval_rouge-1': 50.4851, 'eval_rouge-2': 25.7187, 'eval_rouge-l': 35.9106, 'eval_gen_len': 166.0501, 'eval_runtime': 2922.2897, 'eval_samples_per_second': 0.376, 'eval_steps_per_second': 0.063, 'epoch': 8.0}
80%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ | 4392/5490 [13:34:16<08:18, 2.20it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Prediction *****
Num examples = 1100
Batch size = 6
{'loss': 0.2735, 'grad_norm': 2.4203264713287354, 'learning_rate': 3.6065573770491806e-06, 'epoch': 8.2}
90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 4941/5490 [14:28:33<04:10, 2.19it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Evaluation *****
Num examples = 1098
Batch size = 6
{'eval_loss': 0.4907337725162506, 'eval_rouge-1': 51.017, 'eval_rouge-2': 26.0933, 'eval_rouge-l': 36.1259, 'eval_gen_len': 167.5301, 'eval_runtime': 3054.2577, 'eval_samples_per_second': 0.359, 'eval_steps_per_second': 0.06, 'epoch': 9.0}
90%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–Œ | 4941/5490 [15:19:27<04:10, 2.19it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Prediction *****
Num examples = 1100
Batch size = 6
{'loss': 0.2645, 'grad_norm': 3.681400775909424, 'learning_rate': 1.7850637522768672e-06, 'epoch': 9.11}
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5490/5490 [16:15:41<00:00, 2.20it/s]The following columns in the evaluation set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Evaluation *****
Num examples = 1098
Batch size = 6
{'eval_loss': 0.4916660189628601, 'eval_rouge-1': 51.2775, 'eval_rouge-2': 26.6234, 'eval_rouge-l': 36.7381, 'eval_gen_len': 163.3725, 'eval_runtime': 2893.3367, 'eval_samples_per_second': 0.379, 'eval_steps_per_second': 0.063, 'epoch': 10.0}
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5490/5490 [17:03:54<00:00, 2.20it/s]The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Prediction *****
Num examples = 1100
Batch size = 6
Training completed. Do not forget to share your model on huggingface.co/models =)
{'train_runtime': 64358.151, 'train_samples_per_second': 0.511, 'train_steps_per_second': 0.085, 'train_loss': 0.4479398911550831, 'epoch': 10.0}
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5490/5490 [17:52:38<00:00, 11.72s/it]
Saving model checkpoint to output/adgen/6
Some non-default generation parameters are set in the model config. These should go into a GenerationConfig file (https://huggingface.co/docs/transformers/generation_strategies#save-a-custom-decoding-strategy-with-your-model) instead. This warning will be raised to an exception in v4.41.
Non-default generation parameters: {'max_length': 512, 'early_stopping': True, 'num_beams': 4, 'no_repeat_ngram_size': 3, 'forced_eos_token_id': 102}
Configuration saved in output/adgen/6\config.json
Configuration saved in output/adgen/6\generation_config.json
Removed shared tensor {'model.shared.weight', 'model.decoder.embed_tokens.weight', 'lm_head.weight'} while saving. This should be OK, but check by verifying that you don't receive any warning while reloading
Model weights saved in output/adgen/6\model.safetensors
tokenizer config file saved in output/adgen/6\tokenizer_config.json
Special tokens file saved in output/adgen/6\special_tokens_map.json
***** train metrics *****
epoch = 10.0
train_loss = 0.4479
train_runtime = 17:52:38.15
train_samples = 3290
train_samples_per_second = 0.511
train_steps_per_second = 0.085
The following columns in the test set don't have a corresponding argument in `CPTForConditionalGeneration.forward` and have been ignored: token_type_ids. If token_type_ids are not expected by `CPTForConditionalGeneration.forward`, you can safely ignore this message.
***** Running Prediction *****
Num examples = 1100
Batch size = 6
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 184/184 [48:39<00:00, 15.87s/it]
C:\Users\Lenovo\Desktop\wxy\CPT-master\finetune\generation>