SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the deepparse_address_mutations_comb_3 dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("jarredparrett/all-MiniLM-L6-v2_tuned_on_deepparse_address_mutations_comb_3")
# Run inference
sentences = [
    '8234 harvest bend lane laurel md 20707',
    '8234 harvest bend lane laurel md',
    '8702 wahl crse basement santee ca 92071',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.9771
cosine_accuracy_threshold 0.7712
cosine_f1 0.9784
cosine_f1_threshold 0.7712
cosine_precision 0.9601
cosine_recall 0.9974
cosine_ap 0.9865
dot_accuracy 0.9771
dot_accuracy_threshold 0.7712
dot_f1 0.9784
dot_f1_threshold 0.7712
dot_precision 0.9601
dot_recall 0.9974
dot_ap 0.9865
manhattan_accuracy 0.977
manhattan_accuracy_threshold 10.6015
manhattan_f1 0.9784
manhattan_f1_threshold 10.6118
manhattan_precision 0.96
manhattan_recall 0.9974
manhattan_ap 0.9865
euclidean_accuracy 0.9771
euclidean_accuracy_threshold 0.6764
euclidean_f1 0.9784
euclidean_f1_threshold 0.6764
euclidean_precision 0.9601
euclidean_recall 0.9974
euclidean_ap 0.9866
max_accuracy 0.9771
max_accuracy_threshold 10.6015
max_f1 0.9784
max_f1_threshold 10.6118
max_precision 0.9601
max_recall 0.9974
max_ap 0.9866

Binary Classification

Metric Value
cosine_accuracy 0.9771
cosine_accuracy_threshold 0.7711
cosine_f1 0.9784
cosine_f1_threshold 0.7711
cosine_precision 0.96
cosine_recall 0.9974
cosine_ap 0.9865
dot_accuracy 0.9771
dot_accuracy_threshold 0.7711
dot_f1 0.9784
dot_f1_threshold 0.7711
dot_precision 0.96
dot_recall 0.9974
dot_ap 0.9866
manhattan_accuracy 0.977
manhattan_accuracy_threshold 10.5101
manhattan_f1 0.9784
manhattan_f1_threshold 10.6372
manhattan_precision 0.9599
manhattan_recall 0.9975
manhattan_ap 0.9866
euclidean_accuracy 0.9771
euclidean_accuracy_threshold 0.6766
euclidean_f1 0.9784
euclidean_f1_threshold 0.6766
euclidean_precision 0.96
euclidean_recall 0.9974
euclidean_ap 0.9866
max_accuracy 0.9771
max_accuracy_threshold 10.5101
max_f1 0.9784
max_f1_threshold 10.6372
max_precision 0.96
max_recall 0.9975
max_ap 0.9866

Training Details

Training Dataset

deepparse_address_mutations_comb_3

  • Dataset: deepparse_address_mutations_comb_3 at 7162fdc
  • Size: 4,517,388 training samples
  • Columns: label, sentence1, and sentence2
  • Approximate statistics based on the first 1000 samples:
    label sentence1 sentence2
    type torch.Tensor string string
    details
    • min: 8 tokens
    • mean: 13.21 tokens
    • max: 22 tokens
    • min: 6 tokens
    • mean: 13.54 tokens
    • max: 22 tokens
  • Samples:
    label sentence1 sentence2
    tensor(1, device='cuda:0') 12737 chesdin landng dr chesterfield va 23838 12737 chesdin landng dr chesterfield va
    tensor(1, device='cuda:0') 6080 norh oak trafficway gladstone mo 64118 6080 norh oak trafficway gladstone 64118-4896
    tensor(0, device='cuda:0') 242 pierce view cir wentzville mo 63385 242 pierce view cir wentzville LA 63385
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Evaluation Dataset

deepparse_address_mutations_comb_3

  • Dataset: deepparse_address_mutations_comb_3 at 7162fdc
  • Size: 968,012 evaluation samples
  • Columns: label, sentence1, and sentence2
  • Approximate statistics based on the first 1000 samples:
    label sentence1 sentence2
    type torch.Tensor string string
    details
    • min: 8 tokens
    • mean: 13.24 tokens
    • max: 22 tokens
    • min: 7 tokens
    • mean: 13.45 tokens
    • max: 27 tokens
  • Samples:
    label sentence1 sentence2
    tensor(1, device='cuda:0') 1 vincent avenue essex maryland 21221 1 vincent avenue essedx MD 21221
    tensor(1, device='cuda:0') 139 berg avenue hamilton tshp n.j. 08610 139 bcrg avenue hamilton tshp n.j. 08610
    tensor(1, device='cuda:0') 714 havard rd houston texas 77336 714 havaplns plns houston texas 77336-3120
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.5,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 1024
  • per_device_eval_batch_size: 1024
  • learning_rate: 2e-05
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 1024
  • per_device_eval_batch_size: 1024
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss jarredparrett/deepparse_address_mutations_comb_3_max_ap
0.1133 500 0.0191 0.0131 0.8459
0.2267 1000 0.0112 0.0091 0.8887
0.3400 1500 0.0086 0.0067 0.9346
0.4533 2000 0.0064 0.0044 0.9604
0.5666 2500 0.0049 0.0037 0.9722
0.6800 3000 0.0042 0.0033 0.9761
0.7933 3500 0.0039 0.0032 0.9808
0.9066 4000 0.0037 0.0029 0.9825
1.0197 4500 0.0035 0.0028 0.9826
1.1330 5000 0.0033 0.0028 0.9836
1.2464 5500 0.0032 0.0027 0.9845
1.3597 6000 0.0031 0.0026 0.9853
1.4730 6500 0.003 0.0025 0.9857
1.5864 7000 0.003 0.0025 0.9859
1.6997 7500 0.0029 0.0025 0.9862
1.8130 8000 0.0028 0.0024 0.9864
1.9263 8500 0.0028 0.0024 0.9861
2.0394 9000 0.0028 0.0024 0.9864
2.1528 9500 0.0027 0.0024 0.9864
2.2661 10000 0.0027 0.0024 0.9865
2.3794 10500 0.0027 0.0023 0.9866
2.4927 11000 0.0026 0.0023 0.9866
2.6061 11500 0.0026 0.0023 0.9865
2.7194 12000 0.0026 0.0023 0.9865
2.8327 12500 0.0026 0.0023 0.9865
2.9461 13000 0.0026 0.0023 0.9866
2.9995 13236 - - 0.9866

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.1.1
  • Datasets: 3.2.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}
Downloads last month
16
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for jarredparrett/all-MiniLM-L6-v2_tuned_on_deepparse_address_mutations_comb_3

Finetuned
(193)
this model

Dataset used to train jarredparrett/all-MiniLM-L6-v2_tuned_on_deepparse_address_mutations_comb_3

Evaluation results

  • Cosine Accuracy on jarredparrett/deepparse address mutations comb 3
    self-reported
    0.977
  • Cosine Accuracy Threshold on jarredparrett/deepparse address mutations comb 3
    self-reported
    0.771
  • Cosine F1 on jarredparrett/deepparse address mutations comb 3
    self-reported
    0.978
  • Cosine F1 Threshold on jarredparrett/deepparse address mutations comb 3
    self-reported
    0.771
  • Cosine Precision on jarredparrett/deepparse address mutations comb 3
    self-reported
    0.960
  • Cosine Recall on jarredparrett/deepparse address mutations comb 3
    self-reported
    0.997
  • Cosine Ap on jarredparrett/deepparse address mutations comb 3
    self-reported
    0.986
  • Dot Accuracy on jarredparrett/deepparse address mutations comb 3
    self-reported
    0.977
  • Dot Accuracy Threshold on jarredparrett/deepparse address mutations comb 3
    self-reported
    0.771
  • Dot F1 on jarredparrett/deepparse address mutations comb 3
    self-reported
    0.978