SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the deepparse_address_mutations_comb_3 dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("jarredparrett/all-MiniLM-L6-v2_tuned_on_deepparse_address_mutations_comb_3")
# Run inference
sentences = [
'8234 harvest bend lane laurel md 20707',
'8234 harvest bend lane laurel md',
'8702 wahl crse basement santee ca 92071',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
jarredparrett/deepparse_address_mutations_comb_3
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9771 |
cosine_accuracy_threshold | 0.7712 |
cosine_f1 | 0.9784 |
cosine_f1_threshold | 0.7712 |
cosine_precision | 0.9601 |
cosine_recall | 0.9974 |
cosine_ap | 0.9865 |
dot_accuracy | 0.9771 |
dot_accuracy_threshold | 0.7712 |
dot_f1 | 0.9784 |
dot_f1_threshold | 0.7712 |
dot_precision | 0.9601 |
dot_recall | 0.9974 |
dot_ap | 0.9865 |
manhattan_accuracy | 0.977 |
manhattan_accuracy_threshold | 10.6015 |
manhattan_f1 | 0.9784 |
manhattan_f1_threshold | 10.6118 |
manhattan_precision | 0.96 |
manhattan_recall | 0.9974 |
manhattan_ap | 0.9865 |
euclidean_accuracy | 0.9771 |
euclidean_accuracy_threshold | 0.6764 |
euclidean_f1 | 0.9784 |
euclidean_f1_threshold | 0.6764 |
euclidean_precision | 0.9601 |
euclidean_recall | 0.9974 |
euclidean_ap | 0.9866 |
max_accuracy | 0.9771 |
max_accuracy_threshold | 10.6015 |
max_f1 | 0.9784 |
max_f1_threshold | 10.6118 |
max_precision | 0.9601 |
max_recall | 0.9974 |
max_ap | 0.9866 |
Binary Classification
- Dataset:
jarredparrett/deepparse_address_mutations_comb_3
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9771 |
cosine_accuracy_threshold | 0.7711 |
cosine_f1 | 0.9784 |
cosine_f1_threshold | 0.7711 |
cosine_precision | 0.96 |
cosine_recall | 0.9974 |
cosine_ap | 0.9865 |
dot_accuracy | 0.9771 |
dot_accuracy_threshold | 0.7711 |
dot_f1 | 0.9784 |
dot_f1_threshold | 0.7711 |
dot_precision | 0.96 |
dot_recall | 0.9974 |
dot_ap | 0.9866 |
manhattan_accuracy | 0.977 |
manhattan_accuracy_threshold | 10.5101 |
manhattan_f1 | 0.9784 |
manhattan_f1_threshold | 10.6372 |
manhattan_precision | 0.9599 |
manhattan_recall | 0.9975 |
manhattan_ap | 0.9866 |
euclidean_accuracy | 0.9771 |
euclidean_accuracy_threshold | 0.6766 |
euclidean_f1 | 0.9784 |
euclidean_f1_threshold | 0.6766 |
euclidean_precision | 0.96 |
euclidean_recall | 0.9974 |
euclidean_ap | 0.9866 |
max_accuracy | 0.9771 |
max_accuracy_threshold | 10.5101 |
max_f1 | 0.9784 |
max_f1_threshold | 10.6372 |
max_precision | 0.96 |
max_recall | 0.9975 |
max_ap | 0.9866 |
Training Details
Training Dataset
deepparse_address_mutations_comb_3
- Dataset: deepparse_address_mutations_comb_3 at 7162fdc
- Size: 4,517,388 training samples
- Columns:
label
,sentence1
, andsentence2
- Approximate statistics based on the first 1000 samples:
label sentence1 sentence2 type torch.Tensor string string details - min: 8 tokens
- mean: 13.21 tokens
- max: 22 tokens
- min: 6 tokens
- mean: 13.54 tokens
- max: 22 tokens
- Samples:
label sentence1 sentence2 tensor(1, device='cuda:0')
12737 chesdin landng dr chesterfield va 23838
12737 chesdin landng dr chesterfield va
tensor(1, device='cuda:0')
6080 norh oak trafficway gladstone mo 64118
6080 norh oak trafficway gladstone 64118-4896
tensor(0, device='cuda:0')
242 pierce view cir wentzville mo 63385
242 pierce view cir wentzville LA 63385
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Evaluation Dataset
deepparse_address_mutations_comb_3
- Dataset: deepparse_address_mutations_comb_3 at 7162fdc
- Size: 968,012 evaluation samples
- Columns:
label
,sentence1
, andsentence2
- Approximate statistics based on the first 1000 samples:
label sentence1 sentence2 type torch.Tensor string string details - min: 8 tokens
- mean: 13.24 tokens
- max: 22 tokens
- min: 7 tokens
- mean: 13.45 tokens
- max: 27 tokens
- Samples:
label sentence1 sentence2 tensor(1, device='cuda:0')
1 vincent avenue essex maryland 21221
1 vincent avenue essedx MD 21221
tensor(1, device='cuda:0')
139 berg avenue hamilton tshp n.j. 08610
139 bcrg avenue hamilton tshp n.j. 08610
tensor(1, device='cuda:0')
714 havard rd houston texas 77336
714 havaplns plns houston texas 77336-3120
- Loss:
ContrastiveLoss
with these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 1024per_device_eval_batch_size
: 1024learning_rate
: 2e-05warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 1024per_device_eval_batch_size
: 1024per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | jarredparrett/deepparse_address_mutations_comb_3_max_ap |
---|---|---|---|---|
0.1133 | 500 | 0.0191 | 0.0131 | 0.8459 |
0.2267 | 1000 | 0.0112 | 0.0091 | 0.8887 |
0.3400 | 1500 | 0.0086 | 0.0067 | 0.9346 |
0.4533 | 2000 | 0.0064 | 0.0044 | 0.9604 |
0.5666 | 2500 | 0.0049 | 0.0037 | 0.9722 |
0.6800 | 3000 | 0.0042 | 0.0033 | 0.9761 |
0.7933 | 3500 | 0.0039 | 0.0032 | 0.9808 |
0.9066 | 4000 | 0.0037 | 0.0029 | 0.9825 |
1.0197 | 4500 | 0.0035 | 0.0028 | 0.9826 |
1.1330 | 5000 | 0.0033 | 0.0028 | 0.9836 |
1.2464 | 5500 | 0.0032 | 0.0027 | 0.9845 |
1.3597 | 6000 | 0.0031 | 0.0026 | 0.9853 |
1.4730 | 6500 | 0.003 | 0.0025 | 0.9857 |
1.5864 | 7000 | 0.003 | 0.0025 | 0.9859 |
1.6997 | 7500 | 0.0029 | 0.0025 | 0.9862 |
1.8130 | 8000 | 0.0028 | 0.0024 | 0.9864 |
1.9263 | 8500 | 0.0028 | 0.0024 | 0.9861 |
2.0394 | 9000 | 0.0028 | 0.0024 | 0.9864 |
2.1528 | 9500 | 0.0027 | 0.0024 | 0.9864 |
2.2661 | 10000 | 0.0027 | 0.0024 | 0.9865 |
2.3794 | 10500 | 0.0027 | 0.0023 | 0.9866 |
2.4927 | 11000 | 0.0026 | 0.0023 | 0.9866 |
2.6061 | 11500 | 0.0026 | 0.0023 | 0.9865 |
2.7194 | 12000 | 0.0026 | 0.0023 | 0.9865 |
2.8327 | 12500 | 0.0026 | 0.0023 | 0.9865 |
2.9461 | 13000 | 0.0026 | 0.0023 | 0.9866 |
2.9995 | 13236 | - | - | 0.9866 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.2.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for jarredparrett/all-MiniLM-L6-v2_tuned_on_deepparse_address_mutations_comb_3
Base model
sentence-transformers/all-MiniLM-L6-v2Dataset used to train jarredparrett/all-MiniLM-L6-v2_tuned_on_deepparse_address_mutations_comb_3
Evaluation results
- Cosine Accuracy on jarredparrett/deepparse address mutations comb 3self-reported0.977
- Cosine Accuracy Threshold on jarredparrett/deepparse address mutations comb 3self-reported0.771
- Cosine F1 on jarredparrett/deepparse address mutations comb 3self-reported0.978
- Cosine F1 Threshold on jarredparrett/deepparse address mutations comb 3self-reported0.771
- Cosine Precision on jarredparrett/deepparse address mutations comb 3self-reported0.960
- Cosine Recall on jarredparrett/deepparse address mutations comb 3self-reported0.997
- Cosine Ap on jarredparrett/deepparse address mutations comb 3self-reported0.986
- Dot Accuracy on jarredparrett/deepparse address mutations comb 3self-reported0.977
- Dot Accuracy Threshold on jarredparrett/deepparse address mutations comb 3self-reported0.771
- Dot F1 on jarredparrett/deepparse address mutations comb 3self-reported0.978