ResNet50 ImageNet Classifier
Model Description
This model is a ResNet50 architecture trained on ImageNet dataset.
Performance
- Best Validation Accuracy: 0.00%
- Training Epochs: 42
Training Details
- Framework: PyTorch
- Task: Image Classification
- Dataset: ImageNet
- Input Size: 224x224
- Number of Classes: 1000
Usage
from transformers import AutoImageProcessor, AutoModelForImageClassification
import torch
# Load model and processor
model = AutoModelForImageClassification.from_pretrained("jatingocodeo/ImageNet")
processor = AutoImageProcessor.from_pretrained("jatingocodeo/ImageNet")
# Prepare image
image = Image.open("path/to/image.jpg")
inputs = processor(image, return_tensors="pt")
# Get predictions
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class = logits.argmax(-1).item()