jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
from abc import ABC, abstractmethod
from collections import OrderedDict
import numpy as np
import math
from scipy.spatial.transform import Rotation as R
import torch
from kiui.cam import orbit_camera
#{Key: [elevation, azimuth], ...}
ORBITPOSE_PRESET_DICT = OrderedDict([
("Custom", [[0.0, 90.0, 0.0, 0.0, -90.0, 0.0], [-90.0, 0.0, 180.0, 90.0, 0.0, 0.0]]),
("CRM(6)", [[0.0, 90.0, 0.0, 0.0, -90.0, 0.0], [-90.0, 0.0, 180.0, 90.0, 0.0, 0.0]]),
("Wonder3D(6)", [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 45.0, 90.0, 180.0, -90.0, -45.0]]),
("Zero123Plus(6)", [[-20.0, 10.0, -20.0, 10.0, -20.0, 10.0], [30.0, 90.0, 150.0, -150.0, -90.0, -30.0]]),
("Era3D(6)", [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 45.0, 90.0, 180.0, -90.0, -45.0]]),
("MVDream(4)", [[0.0, 0.0, 0.0, 0.0], [0.0, 90.0, 180.0, -90.0]]),
("Unique3D(4)", [[0.0, 0.0, 0.0, 0.0], [0.0, 90.0, 180.0, -90.0]]),
("CharacterGen(4)", [[0.0, 0.0, 0.0, 0.0], [-90.0, 180.0, 90.0, 0.0]]),
])
ELEVATION_MIN = -89.999
ELEVATION_MAX = 89.999
AZIMUTH_MIN = -180.0
AZIMUTH_MAX = 180.0
def dot(x, y):
if isinstance(x, np.ndarray):
return np.sum(x * y, -1, keepdims=True)
else:
return torch.sum(x * y, -1, keepdim=True)
def length(x, eps=1e-20):
if isinstance(x, np.ndarray):
return np.sqrt(np.maximum(np.sum(x * x, axis=-1, keepdims=True), eps))
else:
return torch.sqrt(torch.clamp(dot(x, x), min=eps))
def safe_normalize(x, eps=1e-20):
return x / length(x, eps)
def look_at(campos, target, opengl=True):
# campos: [N, 3], camera/eye position
# target: [N, 3], object to look at
# return: [N, 3, 3], rotation matrix
if not opengl:
# camera forward aligns with -z
forward_vector = safe_normalize(target - campos)
up_vector = np.array([0, 1, 0], dtype=np.float32)
right_vector = safe_normalize(np.cross(forward_vector, up_vector))
up_vector = safe_normalize(np.cross(right_vector, forward_vector))
else:
# camera forward aligns with +z
forward_vector = safe_normalize(campos - target)
up_vector = np.array([0, 1, 0], dtype=np.float32)
right_vector = safe_normalize(np.cross(up_vector, forward_vector))
up_vector = safe_normalize(np.cross(forward_vector, right_vector))
R = np.stack([right_vector, up_vector, forward_vector], axis=1)
return R
def get_look_at_camera_pose(target, target_to_cam_offset, look_distance=0.1, opengl=True):
"""
Calculate the pose (cam2world) matrix from target position the camera suppose to look at and offset vector from target to camera
Args:
target (NDArray[float32], shape: 3): the target position the camera suppose to look at
target_to_cam_dir (NDArray[float32], shape: 3): offset direction from target to camera
look_distance (float, optional): length of offset vector from target to camera.
Returns:
NDArray[float32]: shape: (4, 4), pose (cam2world) matrix
"""
norm=np.linalg.norm(target_to_cam_offset)
if norm==0:
norm=np.finfo(np.float32).eps
target_to_cam_offset = look_distance * target_to_cam_offset / norm
campos = target_to_cam_offset + target # [3]
T = np.eye(4, dtype=np.float32)
T[:3, :3] = look_at(campos, target, opengl)
T[:3, 3] = campos
return T
class OrbitCamera:
def __init__(self, W, H, r=2, fovy=60, near=0.01, far=100):
self.W = W
self.H = H
self.radius = r # camera distance from center
self.fovy = np.deg2rad(fovy) # deg 2 rad
self.near = near
self.far = far
self.center = np.array([0, 0, 0], dtype=np.float32) # look at this point
self.rot = R.from_matrix(np.eye(3))
self.up = np.array([0, 1, 0], dtype=np.float32) # need to be normalized!
@property
def fovx(self):
return 2 * np.arctan(np.tan(self.fovy / 2) * self.W / self.H)
@property
def campos(self):
return self.pose[:3, 3]
# pose (c2w)
@property
def pose(self):
# first move camera to radius
res = np.eye(4, dtype=np.float32)
res[2, 3] = self.radius # opengl convention...
# rotate
rot = np.eye(4, dtype=np.float32)
rot[:3, :3] = self.rot.as_matrix()
res = rot @ res
# translate
res[:3, 3] -= self.center
return res
# view (w2c)
@property
def view(self):
return np.linalg.inv(self.pose)
# projection (perspective)
@property
def perspective(self):
y = np.tan(self.fovy / 2)
aspect = self.W / self.H
return np.array(
[
[1 / (y * aspect), 0, 0, 0],
[0, -1 / y, 0, 0],
[
0,
0,
-(self.far + self.near) / (self.far - self.near),
-(2 * self.far * self.near) / (self.far - self.near),
],
[0, 0, -1, 0],
],
dtype=np.float32,
)
# intrinsics
@property
def intrinsics(self):
focal = self.H / (2 * np.tan(self.fovy / 2))
return np.array([focal, focal, self.W // 2, self.H // 2], dtype=np.float32)
@property
def mvp(self):
return self.perspective @ np.linalg.inv(self.pose) # [4, 4]
def orbit(self, dx, dy):
# rotate along camera up/side axis!
side = self.rot.as_matrix()[:3, 0]
rotvec_x = self.up * np.radians(-0.05 * dx)
rotvec_y = side * np.radians(-0.05 * dy)
self.rot = R.from_rotvec(rotvec_x) * R.from_rotvec(rotvec_y) * self.rot
def scale(self, delta):
self.radius *= 1.1 ** (-delta)
def pan(self, dx, dy, dz=0):
# pan in camera coordinate system (careful on the sensitivity!)
self.center += 0.0005 * self.rot.as_matrix()[:3, :3] @ np.array([-dx, -dy, dz])
def calculate_fovX(H, W, fovy):
return 2 * np.arctan(np.tan(fovy / 2) * W / H)
def get_projection_matrix(znear, zfar, fovX, fovY, z_sign=1.0):
tanHalfFovY = math.tan((fovY / 2))
tanHalfFovX = math.tan((fovX / 2))
P = torch.zeros(4, 4)
P[0, 0] = 1 / tanHalfFovX
P[1, 1] = 1 / tanHalfFovY
P[3, 2] = z_sign
P[2, 2] = z_sign * zfar / (zfar - znear)
P[2, 3] = -(zfar * znear) / (zfar - znear)
return P
class MiniCam:
def __init__(self, c2w, width, height, fovy, fovx, znear, zfar, projection_matrix=None):
# c2w (pose) should be in NeRF convention.
self.image_width = width
self.image_height = height
self.FoVy = fovy
self.FoVx = fovx
self.znear = znear
self.zfar = zfar
w2c = np.linalg.inv(c2w)
# rectify...
w2c[1:3, :3] *= -1
w2c[:3, 3] *= -1
self.world_view_transform = torch.tensor(w2c).transpose(0, 1).cuda()
self.projection_matrix = (
get_projection_matrix(
znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy
)
.transpose(0, 1)
.cuda()
) if projection_matrix is None else projection_matrix
self.full_proj_transform = self.world_view_transform @ self.projection_matrix
self.camera_center = -torch.tensor(c2w[:3, 3]).cuda()
class BaseCameraController(ABC):
def __init__(self, renderer, cam_size_W, cam_size_H, reference_orbit_camera_fovy, invert_bg_prob=1.0, static_bg=None, device='cuda'):
self.device = torch.device(device)
self.renderer = renderer
self.cam = OrbitCamera(cam_size_W, cam_size_H, fovy=reference_orbit_camera_fovy)
self.invert_bg_prob = invert_bg_prob
self.black_bg = torch.tensor([0, 0, 0], dtype=torch.float32, device=self.device)
self.white_bg = torch.tensor([1, 1, 1], dtype=torch.float32, device=self.device)
self.static_bg = None if static_bg is None else torch.tensor(static_bg, dtype=torch.float32, device=self.device)
self.post_init()
super().__init__()
def post_init(self):
# Calls after default initialize at the end of __init__()
pass
@abstractmethod
def get_render_result(self, render_pose, bg_color, **kwargs):
pass
def render_at_pose(self, cam_pose, **kwargs):
radius, elevation, azimuth, center_X, center_Y, center_Z = cam_pose
orbit_target = np.array([center_X, center_Y, center_Z], dtype=np.float32)
render_pose = orbit_camera(elevation, azimuth, radius, target=orbit_target)
if self.static_bg is None:
bg_color = self.white_bg if np.random.rand() > self.invert_bg_prob else self.black_bg
else:
bg_color = self.static_bg
return self.get_render_result(render_pose, bg_color, **kwargs)
def render_all_pose(self, all_cam_poses, **kwargs):
all_rendered_images, all_rendered_masks = [], []
extra_outputs = {}
for cam_pose in all_cam_poses:
out = self.render_at_pose(cam_pose, **kwargs)
image = out["image"] # [3, H, W] in [0, 1]
mask = out["alpha"] # [1, H, W] in [0, 1]
all_rendered_images.append(image)
all_rendered_masks.append(mask)
for k in out:
if k not in extra_outputs:
extra_outputs[k] = []
extra_outputs[k].append(out[k])
for k in extra_outputs:
extra_outputs[k] = torch.stack(extra_outputs[k], dim=0)
# [Number of Poses, 3, H, W], [Number of Poses, 1, H, W] both in [0, 1]
return torch.stack(all_rendered_images, dim=0), torch.stack(all_rendered_masks, dim=0), extra_outputs
def compose_orbit_camposes(orbit_radius, orbit_elevations, orbit_azimuths, orbit_center_x, orbit_center_y, orbit_center_z):
orbit_camposes = []
campose_num = len(orbit_radius)
for i in range(campose_num):
orbit_camposes.append([
orbit_radius[i],
np.clip(orbit_elevations[i], ELEVATION_MIN, ELEVATION_MAX),
np.clip(orbit_azimuths[i], AZIMUTH_MIN, AZIMUTH_MAX),
orbit_center_x[i], orbit_center_y[i], orbit_center_z[i]
])
return orbit_camposes