|
from torch import Tensor |
|
|
|
import folder_paths |
|
from comfy.model_patcher import ModelPatcher |
|
|
|
from .control import load_controlnet, convert_to_advanced, is_advanced_controlnet, is_sd3_advanced_controlnet |
|
from .utils import ControlWeights, LatentKeyframeGroup, TimestepKeyframeGroup, AbstractPreprocWrapper, BIGMAX |
|
|
|
from .logger import logger |
|
|
|
|
|
class ControlNetLoaderAdvanced: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"cnet": (folder_paths.get_filename_list("controlnet"), ), |
|
}, |
|
"optional": { |
|
"_tk_opt": ("TIMESTEP_KEYFRAME", ), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("CONTROL_NET", ) |
|
FUNCTION = "load_controlnet" |
|
|
|
CATEGORY = "Adv-ControlNet ππ
π
π
" |
|
|
|
def load_controlnet(self, cnet, |
|
_tk_opt: TimestepKeyframeGroup=None, |
|
): |
|
controlnet_path = folder_paths.get_full_path("controlnet", cnet) |
|
controlnet = load_controlnet(controlnet_path, _tk_opt) |
|
return (controlnet,) |
|
|
|
|
|
class DiffControlNetLoaderAdvanced: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"model": ("MODEL",), |
|
"cnet": (folder_paths.get_filename_list("controlnet"), ) |
|
}, |
|
"optional": { |
|
"_tk_opt": ("TIMESTEP_KEYFRAME", ), |
|
}, |
|
"hidden": { |
|
"autosize": ("ACNAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("CONTROL_NET", ) |
|
FUNCTION = "load_controlnet" |
|
|
|
CATEGORY = "Adv-ControlNet ππ
π
π
" |
|
|
|
def load_controlnet(self, cnet, model, |
|
_tk_opt: TimestepKeyframeGroup=None, |
|
): |
|
controlnet_path = folder_paths.get_full_path("controlnet", cnet) |
|
controlnet = load_controlnet(controlnet_path, _tk_opt, model) |
|
if is_advanced_controlnet(controlnet): |
|
controlnet.verify_all_weights() |
|
return (controlnet,) |
|
|
|
|
|
class AdvancedControlNetApply: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"positive": ("CONDITIONING", ), |
|
"negative": ("CONDITIONING", ), |
|
"control_net": ("CONTROL_NET", ), |
|
"image": ("IMAGE", ), |
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}) |
|
}, |
|
"optional": { |
|
"mask_optional": ("MASK", ), |
|
"timestep_kf": ("TIMESTEP_KEYFRAME", ), |
|
"latent_kf_override": ("LATENT_KEYFRAME", ), |
|
"weights_override": ("CONTROL_NET_WEIGHTS", ), |
|
"vae_optional": ("VAE",), |
|
}, |
|
"hidden": { |
|
"autosize": ("ACNAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("CONDITIONING","CONDITIONING",) |
|
RETURN_NAMES = ("positive", "negative") |
|
FUNCTION = "apply_controlnet" |
|
|
|
CATEGORY = "Adv-ControlNet ππ
π
π
" |
|
|
|
def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent, |
|
mask_optional: Tensor=None, vae_optional=None, |
|
timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None, |
|
weights_override: ControlWeights=None, control_apply_to_uncond=False): |
|
if strength == 0: |
|
return (positive, negative) |
|
|
|
control_hint = image.movedim(-1,1) |
|
cnets = {} |
|
|
|
out = [] |
|
for conditioning in [positive, negative]: |
|
c = [] |
|
if conditioning is not None: |
|
for t in conditioning: |
|
d = t[1].copy() |
|
|
|
prev_cnet = d.get('control', None) |
|
if prev_cnet in cnets: |
|
c_net = cnets[prev_cnet] |
|
else: |
|
|
|
if control_net is None: |
|
raise Exception("Passed in control_net is None; something must have went wrong when loading it from a Load ControlNet node.") |
|
|
|
c_net = convert_to_advanced(control_net.copy()).set_cond_hint(control_hint, strength, (start_percent, end_percent), vae_optional) |
|
if is_advanced_controlnet(c_net): |
|
|
|
c_net.disarm() |
|
|
|
if c_net.allow_condhint_latents and not c_net.require_vae: |
|
if not isinstance(control_hint, AbstractPreprocWrapper): |
|
raise Exception(f"Type '{type(c_net).__name__}' requires proc_IMAGE input via a corresponding preprocessor, but received a normal Image instead.") |
|
else: |
|
if isinstance(control_hint, AbstractPreprocWrapper) and not c_net.postpone_condhint_latents_check: |
|
raise Exception(f"Type '{type(c_net).__name__}' requires a normal Image input, but received a proc_IMAGE input instead.") |
|
|
|
if c_net.require_vae: |
|
|
|
if c_net.allow_condhint_latents and isinstance(control_hint, AbstractPreprocWrapper): |
|
pass |
|
elif not vae_optional: |
|
|
|
if is_sd3_advanced_controlnet(c_net): |
|
raise Exception(f"SD3 ControlNet requires vae_optional input, but got None.") |
|
else: |
|
raise Exception(f"Type '{type(c_net).__name__}' requires vae_optional input, but got None.") |
|
|
|
if timestep_kf is not None: |
|
c_net.set_timestep_keyframes(timestep_kf) |
|
if latent_kf_override is not None: |
|
c_net.latent_keyframe_override = latent_kf_override |
|
if weights_override is not None: |
|
c_net.weights_override = weights_override |
|
|
|
c_net.verify_all_weights() |
|
|
|
if mask_optional is not None: |
|
mask_optional = mask_optional.clone() |
|
|
|
if len(mask_optional.shape) < 3: |
|
mask_optional = mask_optional.unsqueeze(0) |
|
c_net.set_cond_hint_mask(mask_optional) |
|
c_net.set_previous_controlnet(prev_cnet) |
|
cnets[prev_cnet] = c_net |
|
|
|
d['control'] = c_net |
|
d['control_apply_to_uncond'] = control_apply_to_uncond |
|
n = [t[0], d] |
|
c.append(n) |
|
out.append(c) |
|
return (out[0], out[1]) |
|
|
|
|
|
class AdvancedControlNetApplySingle: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"conditioning": ("CONDITIONING", ), |
|
"control_net": ("CONTROL_NET", ), |
|
"image": ("IMAGE", ), |
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}) |
|
}, |
|
"optional": { |
|
"mask_optional": ("MASK", ), |
|
"timestep_kf": ("TIMESTEP_KEYFRAME", ), |
|
"latent_kf_override": ("LATENT_KEYFRAME", ), |
|
"weights_override": ("CONTROL_NET_WEIGHTS", ), |
|
"vae_optional": ("VAE",), |
|
}, |
|
"hidden": { |
|
"autosize": ("ACNAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("CONDITIONING","MODEL",) |
|
RETURN_NAMES = ("CONDITIONING", "model_opt") |
|
FUNCTION = "apply_controlnet" |
|
|
|
CATEGORY = "Adv-ControlNet ππ
π
π
" |
|
|
|
def apply_controlnet(self, conditioning, control_net, image, strength, start_percent, end_percent, |
|
mask_optional: Tensor=None, vae_optional=None, |
|
timestep_kf: TimestepKeyframeGroup=None, latent_kf_override: LatentKeyframeGroup=None, |
|
weights_override: ControlWeights=None): |
|
values = AdvancedControlNetApply.apply_controlnet(self, positive=conditioning, negative=None, control_net=control_net, image=image, |
|
strength=strength, start_percent=start_percent, end_percent=end_percent, |
|
mask_optional=mask_optional, vae_optional=vae_optional, |
|
timestep_kf=timestep_kf, latent_kf_override=latent_kf_override, weights_override=weights_override, |
|
control_apply_to_uncond=True) |
|
return (values[0],) |
|
|