|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from torch import Tensor |
|
from einops import rearrange |
|
|
|
import comfy.ops |
|
|
|
from .context import ContextOptions, ContextFuseMethod, ContextSchedules |
|
from .motion_module_ad import TemporalTransformerBlock, get_position_encoding_max_len |
|
from .logger import logger |
|
|
|
|
|
def conv_nd(dims, *args, **kwargs): |
|
""" |
|
Create a 1D, 2D, or 3D convolution module. |
|
""" |
|
if dims == 1: |
|
return nn.Conv1d(*args, **kwargs) |
|
elif dims == 2: |
|
return nn.Conv2d(*args, **kwargs) |
|
elif dims == 3: |
|
return nn.Conv3d(*args, **kwargs) |
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
|
|
def avg_pool_nd(dims, *args, **kwargs): |
|
""" |
|
Create a 1D, 2D, or 3D average pooling module. |
|
""" |
|
if dims == 1: |
|
return nn.AvgPool1d(*args, **kwargs) |
|
elif dims == 2: |
|
return nn.AvgPool2d(*args, **kwargs) |
|
elif dims == 3: |
|
return nn.AvgPool3d(*args, **kwargs) |
|
raise ValueError(f"unsupported dimensions: {dims}") |
|
|
|
|
|
class CameraEntry: |
|
def __init__(self, entry: list[float]): |
|
self.entry = entry.copy() |
|
self.orig_pose_width = entry[5] |
|
self.orig_pose_height = entry[6] |
|
|
|
fx, fy, cx, cy = entry[1:5] |
|
self.fx = fx |
|
self.fy = fy |
|
self.cx = cx |
|
self.cy = cy |
|
w2c_mat = np.array(entry[7:]).reshape(3, 4) |
|
w2c_mat_4x4 = np.eye(4) |
|
w2c_mat_4x4[:3, :] = w2c_mat |
|
self.w2c_mat = w2c_mat_4x4 |
|
self.c2w_mat = np.linalg.inv(w2c_mat_4x4) |
|
|
|
def clone(self): |
|
return CameraEntry(entry=self.entry) |
|
|
|
|
|
def get_parameter_dtype(parameter: torch.nn.Module): |
|
params = tuple(parameter.parameters()) |
|
if len(params) > 0: |
|
return params[0].dtype |
|
|
|
buffers = tuple(parameter.buffers()) |
|
if len(buffers) > 0: |
|
return buffers[0].dtype |
|
|
|
|
|
def get_parameter_device(parameter: torch.nn.Module): |
|
params = tuple(parameter.parameters()) |
|
if len(params) > 0: |
|
return params[0].device |
|
|
|
buffers = tuple(parameter.buffers()) |
|
if len(buffers) > 0: |
|
return buffers[0].device |
|
|
|
|
|
def custom_meshgrid(*args): |
|
|
|
return torch.meshgrid(*args, indexing='ij') |
|
|
|
|
|
def get_relative_pose(cam_params: list[CameraEntry]): |
|
abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params] |
|
abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params] |
|
cam_to_origin = 0 |
|
target_cam_c2w = np.array([ |
|
[1, 0, 0, 0], |
|
[0, 1, 0, -cam_to_origin], |
|
[0, 0, 1, 0], |
|
[0, 0, 0, 1] |
|
]) |
|
abs2rel = target_cam_c2w @ abs_w2cs[0] |
|
ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]] |
|
ret_poses = np.array(ret_poses, dtype=np.float32) |
|
return ret_poses |
|
|
|
|
|
def ray_condition(K: Tensor, c2w: Tensor, H, W, device): |
|
|
|
|
|
|
|
B = K.shape[0] |
|
|
|
j, i = custom_meshgrid( |
|
torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype), |
|
torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype), |
|
) |
|
i = i.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 |
|
j = j.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 |
|
|
|
fx, fy, cx, cy = K.chunk(4, dim=-1) |
|
|
|
zs = torch.ones_like(i) |
|
xs = (i - cx) / fx * zs |
|
ys = (j - cy) / fy * zs |
|
zs = zs.expand_as(ys) |
|
|
|
directions = torch.stack((xs, ys, zs), dim=-1) |
|
directions = directions / directions.norm(dim=-1, keepdim=True) |
|
|
|
rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2) |
|
rays_o = c2w[..., :3, 3] |
|
rays_o = rays_o[:, :, None].expand_as(rays_d) |
|
|
|
rays_dxo = torch.cross(rays_o, rays_d) |
|
plucker = torch.cat([rays_dxo, rays_d], dim=-1) |
|
plucker = plucker.reshape(B, c2w.shape[1], H, W, 6) |
|
|
|
return plucker |
|
|
|
|
|
def prepare_pose_embedding(cam_params: list[CameraEntry], image_width, image_height): |
|
|
|
cam_params = [entry.clone() for entry in cam_params] |
|
sample_wh_ratio = image_width / image_height |
|
|
|
for cam_param in cam_params: |
|
pose_wh_ratio = cam_param.orig_pose_width / cam_param.orig_pose_height |
|
|
|
if pose_wh_ratio > sample_wh_ratio: |
|
resized_ori_w = image_height * pose_wh_ratio |
|
cam_param.fx = resized_ori_w * cam_param.fx / image_width |
|
else: |
|
resized_ori_h = image_width / pose_wh_ratio |
|
cam_param.fy = resized_ori_h * cam_param.fy / image_height |
|
intrinsic = np.asarray([[cam_param.fx * image_width, |
|
cam_param.fy * image_height, |
|
cam_param.cx * image_width, |
|
cam_param.cy * image_height] |
|
for cam_param in cam_params], dtype=np.float32) |
|
|
|
K = torch.as_tensor(intrinsic)[None] |
|
c2ws = get_relative_pose(cam_params) |
|
c2ws = torch.as_tensor(c2ws)[None] |
|
plucker_embedding = ray_condition(K, c2ws, image_height, image_width, device='cpu')[0].permute(0, 3, 1, 2).contiguous() |
|
plucker_embedding = rearrange(plucker_embedding, "f c h w -> c f h w") |
|
return plucker_embedding |
|
|
|
|
|
class CameraPoseEncoder(nn.Module): |
|
def __init__(self, |
|
downscale_factor=8, |
|
channels=[320, 640, 1280, 1280], |
|
nums_rb=2, |
|
cin=384, |
|
ksize=1, |
|
sk=True, |
|
use_conv=False, |
|
compression_factor=1, |
|
temporal_attention_nhead=8, |
|
attention_block_types=("Temporal_Self", ), |
|
temporal_position_encoding=True, |
|
temporal_position_encoding_max_len=16, |
|
rescale_output_factor=1.0, |
|
ops=comfy.ops.disable_weight_init): |
|
super(CameraPoseEncoder, self).__init__() |
|
self.unshuffle = nn.PixelUnshuffle(downscale_factor) |
|
self.channels = channels |
|
self.nums_rb = nums_rb |
|
self.encoder_conv_in = ops.Conv2d(cin, channels[0], 3, 1, 1) |
|
self.encoder_down_conv_blocks = nn.ModuleList() |
|
self.encoder_down_attention_blocks = nn.ModuleList() |
|
for i in range(len(channels)): |
|
conv_layers = nn.ModuleList() |
|
temporal_attention_layers = nn.ModuleList() |
|
for j in range(nums_rb): |
|
if j == 0 and i != 0: |
|
in_dim = channels[i - 1] |
|
out_dim = int(channels[i] / compression_factor) |
|
conv_layer = ResnetBlockCameraCtrl(in_dim, out_dim, down=True, ksize=ksize, sk=sk, use_conv=use_conv, ops=ops) |
|
elif j == 0: |
|
in_dim = channels[0] |
|
out_dim = int(channels[i] / compression_factor) |
|
conv_layer = ResnetBlockCameraCtrl(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv, ops=ops) |
|
elif j == nums_rb - 1: |
|
in_dim = channels[i] / compression_factor |
|
out_dim = channels[i] |
|
conv_layer = ResnetBlockCameraCtrl(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv, ops=ops) |
|
else: |
|
in_dim = int(channels[i] / compression_factor) |
|
out_dim = int(channels[i] / compression_factor) |
|
conv_layer = ResnetBlockCameraCtrl(in_dim, out_dim, down=False, ksize=ksize, sk=sk, use_conv=use_conv, ops=ops) |
|
temporal_attention_layer = TemporalTransformerBlock(dim=out_dim, |
|
num_attention_heads=temporal_attention_nhead, |
|
attention_head_dim=int(out_dim / temporal_attention_nhead), |
|
attention_block_types=attention_block_types, |
|
dropout=0.0, |
|
cross_attention_dim=None, |
|
temporal_pe=temporal_position_encoding, |
|
temporal_pe_max_len=temporal_position_encoding_max_len, |
|
ops=ops) |
|
conv_layers.append(conv_layer) |
|
temporal_attention_layers.append(temporal_attention_layer) |
|
self.encoder_down_conv_blocks.append(conv_layers) |
|
self.encoder_down_attention_blocks.append(temporal_attention_layers) |
|
self.temporal_pe_max_len = 16 |
|
|
|
def forward(self, x: Tensor, video_length: int, batched_number: int=1): |
|
|
|
x = rearrange(x, "c f h w -> f c h w") |
|
|
|
|
|
x = self.unshuffle(x) |
|
|
|
features = [] |
|
|
|
view_options = ContextOptions( |
|
context_length=self.temporal_pe_max_len, |
|
context_overlap=self.temporal_pe_max_len//2, |
|
context_schedule=ContextSchedules.STATIC_STANDARD, |
|
fuse_method=ContextFuseMethod.PYRAMID, |
|
) |
|
|
|
|
|
x = self.encoder_conv_in(x.to(dtype=get_parameter_dtype(self), device=get_parameter_device(self))) |
|
for res_block, attention_block in zip(self.encoder_down_conv_blocks, self.encoder_down_attention_blocks): |
|
for res_layer, attention_layer in zip(res_block, attention_block): |
|
x = res_layer(x) |
|
h, w = x.shape[-2:] |
|
x = rearrange(x, 'b c h w -> b (h w) c') |
|
x = attention_layer(x, video_length=video_length, view_options=view_options) |
|
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w) |
|
features.append(x) |
|
|
|
|
|
for idx, x1 in enumerate(features): |
|
x1 = x1.to(x.dtype).to(x.device) |
|
x1 = rearrange(x1, 'b c h w -> (h w) b c') |
|
x1 = torch.cat([x1] * batched_number, dim=0) |
|
features[idx] = x1 |
|
return features |
|
|
|
|
|
class ResnetBlockCameraCtrl(nn.Module): |
|
def __init__(self, in_c, out_c, down: bool, ksize=3, sk=False, use_conv=True, |
|
ops=comfy.ops.disable_weight_init): |
|
super().__init__() |
|
ps = ksize // 2 |
|
if in_c != out_c or sk == False: |
|
self.in_conv = ops.Conv2d(in_c, out_c, ksize, 1, ps) |
|
else: |
|
self.in_conv = None |
|
self.block1 = ops.Conv2d(out_c, out_c, 3, 1, 1) |
|
self.act = nn.ReLU() |
|
self.block2 = ops.Conv2d(out_c, out_c, ksize, 1, ps) |
|
if sk == False: |
|
self.skep = ops.Conv2d(in_c, out_c, ksize, 1, ps) |
|
else: |
|
self.skep = None |
|
|
|
self.down = down |
|
if self.down == True: |
|
self.down_opt = DownsampleCameraCtrl(in_c, use_conv=use_conv) |
|
|
|
def forward(self, x: Tensor): |
|
if self.down == True: |
|
x = self.down_opt(x) |
|
if self.in_conv is not None: |
|
x = self.in_conv(x) |
|
|
|
h = self.block1(x) |
|
h = self.act(h) |
|
h = self.block2(h) |
|
if self.skep is not None: |
|
return h + self.skep(x) |
|
else: |
|
return h + x |
|
|
|
|
|
class DownsampleCameraCtrl(nn.Module): |
|
""" |
|
A downsampling layer with an optional convolution. |
|
:param channels: channels in the inputs and outputs. |
|
:param use_conv: a bool determining if a convolution is applied. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
downsampling occurs in the inner-two dimensions. |
|
""" |
|
|
|
def __init__(self, channels, use_conv: bool, dims=2, out_channels=None, padding=1, |
|
ops=comfy.ops.disable_weight_init): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.dims = dims |
|
stride = 2 if dims != 3 else (1, 2, 2) |
|
if use_conv: |
|
self.operation = ops.conv_nd(dims, in_channels=self.channels, out_channels=self.out_channels, |
|
kernel_size=3, stride=stride, padding=padding) |
|
else: |
|
assert self.channels == self.out_channels |
|
self.operation = avg_pool_nd(dims, kernel_size=stride, stride=stride) |
|
|
|
def forward(self, x: Tensor): |
|
assert x.shape[1] == self.channels |
|
return self.operation(x) |
|
|