jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
from typing import Union
from torch import Tensor
from collections.abc import Iterable
from comfy.sd import VAE
from .freeinit import FreeInitFilter
from .sample_settings import (FreeInitOptions, IterationOptions,
NoiseLayerAdd, NoiseLayerAddWeighted, NoiseLayerGroup, NoiseLayerReplace, NoiseLayerType,
SeedNoiseGeneration, SampleSettings, NoiseCalibration,
CustomCFGKeyframeGroup, CustomCFGKeyframe, CFGExtrasGroup, CFGExtras,
NoisedImageToInjectGroup, NoisedImageToInject, NoisedImageInjectOptions)
from .utils_model import BIGMIN, BIGMAX, MAX_RESOLUTION, SigmaSchedule, InterpolationMethod
from .cfg_extras import perturbed_attention_guidance_patch, rescale_cfg_patch, set_model_options_sampler_cfg_function, set_model_options_post_cfg_function
from .logger import logger
class SampleSettingsNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}),
"noise_type": (NoiseLayerType.LIST,),
"seed_gen": (SeedNoiseGeneration.LIST,),
"seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}),
},
"optional": {
"noise_layers": ("NOISE_LAYERS",),
"iteration_opts": ("ITERATION_OPTS",),
"seed_override": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "forceInput": True}),
"adapt_denoise_steps": ("BOOLEAN", {"default": False},),
"custom_cfg": ("CUSTOM_CFG",),
"sigma_schedule": ("SIGMA_SCHEDULE",),
"image_inject": ("IMAGE_INJECT",),
#"noise_calib": ("NOISE_CALIBRATION",), # TODO: bring back once NoiseCalibration is working
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("SAMPLE_SETTINGS",)
RETURN_NAMES = ("settings",)
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“"
FUNCTION = "create_settings"
def create_settings(self, batch_offset: int, noise_type: str, seed_gen: str, seed_offset: int, noise_layers: NoiseLayerGroup=None,
iteration_opts: IterationOptions=None, seed_override: int=None, adapt_denoise_steps=False,
custom_cfg: CustomCFGKeyframeGroup=None, sigma_schedule: SigmaSchedule=None, image_inject: NoisedImageToInjectGroup=None,
noise_calib: NoiseCalibration=None):
sampling_settings = SampleSettings(batch_offset=batch_offset, noise_type=noise_type, seed_gen=seed_gen, seed_offset=seed_offset, noise_layers=noise_layers,
iteration_opts=iteration_opts, seed_override=seed_override, adapt_denoise_steps=adapt_denoise_steps,
custom_cfg=custom_cfg, sigma_schedule=sigma_schedule, image_injection=image_inject, noise_calibration=noise_calib)
return (sampling_settings,)
class NoiseLayerReplaceNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}),
"noise_type": (NoiseLayerType.LIST,),
"seed_gen_override": (SeedNoiseGeneration.LIST_WITH_OVERRIDE,),
"seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}),
},
"optional": {
"prev_noise_layers": ("NOISE_LAYERS",),
"mask_optional": ("MASK",),
"seed_override": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "forceInput": True}),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("NOISE_LAYERS",)
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/noise layers"
FUNCTION = "create_layers"
def create_layers(self, batch_offset: int, noise_type: str, seed_gen_override: str, seed_offset: int,
prev_noise_layers: NoiseLayerGroup=None, mask_optional: Tensor=None, seed_override: int=None,):
# prepare prev_noise_layers
if prev_noise_layers is None:
prev_noise_layers = NoiseLayerGroup()
prev_noise_layers = prev_noise_layers.clone()
# create layer
layer = NoiseLayerReplace(noise_type=noise_type, batch_offset=batch_offset, seed_gen_override=seed_gen_override, seed_offset=seed_offset,
seed_override=seed_override, mask=mask_optional)
prev_noise_layers.add_to_start(layer)
return (prev_noise_layers,)
class NoiseLayerAddNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}),
"noise_type": (NoiseLayerType.LIST,),
"seed_gen_override": (SeedNoiseGeneration.LIST_WITH_OVERRIDE,),
"seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}),
"noise_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step": 0.001}),
},
"optional": {
"prev_noise_layers": ("NOISE_LAYERS",),
"mask_optional": ("MASK",),
"seed_override": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "forceInput": True}),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("NOISE_LAYERS",)
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/noise layers"
FUNCTION = "create_layers"
def create_layers(self, batch_offset: int, noise_type: str, seed_gen_override: str, seed_offset: int,
noise_weight: float,
prev_noise_layers: NoiseLayerGroup=None, mask_optional: Tensor=None, seed_override: int=None,):
# prepare prev_noise_layers
if prev_noise_layers is None:
prev_noise_layers = NoiseLayerGroup()
prev_noise_layers = prev_noise_layers.clone()
# create layer
layer = NoiseLayerAdd(noise_type=noise_type, batch_offset=batch_offset, seed_gen_override=seed_gen_override, seed_offset=seed_offset,
seed_override=seed_override, mask=mask_optional,
noise_weight=noise_weight)
prev_noise_layers.add_to_start(layer)
return (prev_noise_layers,)
class NoiseLayerAddWeightedNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}),
"noise_type": (NoiseLayerType.LIST,),
"seed_gen_override": (SeedNoiseGeneration.LIST_WITH_OVERRIDE,),
"seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}),
"noise_weight": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step": 0.001}),
"balance_multiplier": ("FLOAT", {"default": 1.0, "min": 0.0, "step": 0.001}),
},
"optional": {
"prev_noise_layers": ("NOISE_LAYERS",),
"mask_optional": ("MASK",),
"seed_override": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "forceInput": True}),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("NOISE_LAYERS",)
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/noise layers"
FUNCTION = "create_layers"
def create_layers(self, batch_offset: int, noise_type: str, seed_gen_override: str, seed_offset: int,
noise_weight: float, balance_multiplier: float,
prev_noise_layers: NoiseLayerGroup=None, mask_optional: Tensor=None, seed_override: int=None,):
# prepare prev_noise_layers
if prev_noise_layers is None:
prev_noise_layers = NoiseLayerGroup()
prev_noise_layers = prev_noise_layers.clone()
# create layer
layer = NoiseLayerAddWeighted(noise_type=noise_type, batch_offset=batch_offset, seed_gen_override=seed_gen_override, seed_offset=seed_offset,
seed_override=seed_override, mask=mask_optional,
noise_weight=noise_weight, balance_multiplier=balance_multiplier)
prev_noise_layers.add_to_start(layer)
return (prev_noise_layers,)
class IterationOptionsNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"iterations": ("INT", {"default": 1, "min": 1}),
},
"optional": {
"iter_batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}),
"iter_seed_offset": ("INT", {"default": 0, "min": BIGMIN, "max": BIGMAX}),
}
}
RETURN_TYPES = ("ITERATION_OPTS",)
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/iteration opts"
FUNCTION = "create_iter_opts"
def create_iter_opts(self, iterations: int, iter_batch_offset: int=0, iter_seed_offset: int=0):
iter_opts = IterationOptions(iterations=iterations, iter_batch_offset=iter_batch_offset, iter_seed_offset=iter_seed_offset)
return (iter_opts,)
class FreeInitOptionsNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"iterations": ("INT", {"default": 2, "min": 1}),
"filter": (FreeInitFilter.LIST,),
"d_s": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.001}),
"d_t": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.001}),
"n_butterworth": ("INT", {"default": 4, "min": 1, "max": 100},),
"sigma_step": ("INT", {"default": 999, "min": 1, "max": 999}),
"apply_to_1st_iter": ("BOOLEAN", {"default": False}),
"init_type": (FreeInitOptions.LIST,)
},
"optional": {
"iter_batch_offset": ("INT", {"default": 0, "min": 0, "max": BIGMAX}),
"iter_seed_offset": ("INT", {"default": 1, "min": BIGMIN, "max": BIGMAX}),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("ITERATION_OPTS",)
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/iteration opts"
FUNCTION = "create_iter_opts"
def create_iter_opts(self, iterations: int, filter: str, d_s: float, d_t: float, n_butterworth: int,
sigma_step: int, apply_to_1st_iter: bool, init_type: str,
iter_batch_offset: int=0, iter_seed_offset: int=1):
# init_type does nothing for now, not until I add more methods of applying low+high freq noise
iter_opts = FreeInitOptions(iterations=iterations, step=sigma_step, apply_to_1st_iter=apply_to_1st_iter,
filter=filter, d_s=d_s, d_t=d_t, n=n_butterworth, init_type=init_type,
iter_batch_offset=iter_batch_offset, iter_seed_offset=iter_seed_offset)
return (iter_opts,)
class NoiseCalibrationNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"calib_iterations": ("INT", {"default": 1, "min": 1, "step": 1}),
"thresh_freq": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.001}),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("NOISE_CALIBRATION",)
RETURN_NAMES = ("NOISE_CALIB",)
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/sample settings"
FUNCTION = "create_noisecalibration"
def create_noisecalibration(self, calib_iterations: int, thresh_freq: float):
noise_calib = NoiseCalibration(scale=thresh_freq, calib_iterations=calib_iterations)
return (noise_calib,)
class CustomCFGNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"cfg_multival": ("MULTIVAL",),
},
"optional": {
"cfg_extras": ("CFG_EXTRAS",),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CUSTOM_CFG",)
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/sample settings/custom cfg"
FUNCTION = "create_custom_cfg"
def create_custom_cfg(self, cfg_multival: Union[float, Tensor], cfg_extras: CFGExtrasGroup=None):
keyframe = CustomCFGKeyframe(cfg_multival=cfg_multival, cfg_extras=cfg_extras)
cfg_custom = CustomCFGKeyframeGroup()
cfg_custom.add(keyframe)
return (cfg_custom,)
class CustomCFGSimpleNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step": 0.1}),
},
"optional": {
"cfg_extras": ("CFG_EXTRAS",),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CUSTOM_CFG",)
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/sample settings/custom cfg"
FUNCTION = "create_custom_cfg"
def create_custom_cfg(self, cfg: float, cfg_extras: CFGExtrasGroup=None):
return CustomCFGNode.create_custom_cfg(self, cfg_multival=cfg, cfg_extras=cfg_extras)
class CustomCFGKeyframeNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"cfg_multival": ("MULTIVAL",),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"guarantee_steps": ("INT", {"default": 1, "min": 0, "max": BIGMAX}),
},
"optional": {
"prev_custom_cfg": ("CUSTOM_CFG",),
"cfg_extras": ("CFG_EXTRAS",),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CUSTOM_CFG",)
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/sample settings/custom cfg"
FUNCTION = "create_custom_cfg"
def create_custom_cfg(self, cfg_multival: Union[float, Tensor], start_percent: float=0.0, guarantee_steps: int=1,
prev_custom_cfg: CustomCFGKeyframeGroup=None, cfg_extras: CFGExtrasGroup=None):
if not prev_custom_cfg:
prev_custom_cfg = CustomCFGKeyframeGroup()
prev_custom_cfg = prev_custom_cfg.clone()
keyframe = CustomCFGKeyframe(cfg_multival=cfg_multival, start_percent=start_percent, guarantee_steps=guarantee_steps, cfg_extras=cfg_extras)
prev_custom_cfg.add(keyframe)
return (prev_custom_cfg,)
class CustomCFGKeyframeSimpleNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step": 0.1}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"guarantee_steps": ("INT", {"default": 1, "min": 0, "max": BIGMAX}),
},
"optional": {
"prev_custom_cfg": ("CUSTOM_CFG",),
"cfg_extras": ("CFG_EXTRAS",),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 10}),
}
}
RETURN_TYPES = ("CUSTOM_CFG",)
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/sample settings/custom cfg"
FUNCTION = "create_custom_cfg"
def create_custom_cfg(self, cfg: float, start_percent: float=0.0, guarantee_steps: int=1,
prev_custom_cfg: CustomCFGKeyframeGroup=None, cfg_extras: CFGExtrasGroup=None):
return CustomCFGKeyframeNode.create_custom_cfg(self, cfg_multival=cfg, start_percent=start_percent,
guarantee_steps=guarantee_steps, prev_custom_cfg=prev_custom_cfg, cfg_extras=cfg_extras)
class CustomCFGKeyframeInterpolationNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"cfg_start": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step": 0.1}),
"cfg_end": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step": 0.1}),
"interpolation": (InterpolationMethod._LIST, ),
"intervals": ("INT", {"default": 50, "min": 2, "max": 100, "step": 1}),
"print_keyframes": ("BOOLEAN", {"default": False}),
},
"optional": {
"prev_custom_cfg": ("CUSTOM_CFG",),
"cfg_extras": ("CFG_EXTRAS",),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CUSTOM_CFG",)
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/sample settings/custom cfg"
FUNCTION = "create_custom_cfg"
def create_custom_cfg(self,
start_percent: float, end_percent: float,
cfg_start: float, cfg_end: float, interpolation: str, intervals: int,
prev_custom_cfg: CustomCFGKeyframeGroup=None, cfg_extras: CFGExtrasGroup=None,
print_keyframes=False):
if not prev_custom_cfg:
prev_custom_cfg = CustomCFGKeyframeGroup()
prev_custom_cfg = prev_custom_cfg.clone()
percents = InterpolationMethod.get_weights(num_from=start_percent, num_to=end_percent, length=intervals, method=InterpolationMethod.LINEAR)
cfgs = InterpolationMethod.get_weights(num_from=cfg_start, num_to=cfg_end, length=intervals, method=interpolation)
is_first = True
for percent, cfg in zip(percents, cfgs):
guarantee_steps = 0
if is_first:
guarantee_steps = 1
is_first = False
prev_custom_cfg.add(CustomCFGKeyframe(cfg_multival=float(cfg), start_percent=percent, guarantee_steps=guarantee_steps, cfg_extras=cfg_extras))
if print_keyframes:
logger.info(f"CustomCFGKeyframe - start_percent:{percent} = {cfg}")
return (prev_custom_cfg,)
class CustomCFGKeyframeFromListNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"cfgs_float": ("FLOAT", {"default": -1, "min": -1, "step": 0.001, "forceInput": True}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"print_keyframes": ("BOOLEAN", {"default": False}),
},
"optional": {
"prev_custom_cfg": ("CUSTOM_CFG",),
"cfg_extras": ("CFG_EXTRAS",),
}
}
RETURN_TYPES = ("CUSTOM_CFG",)
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/sample settings/custom cfg"
FUNCTION = "create_custom_cfg"
def create_custom_cfg(self, cfgs_float: Union[float, list[float]],
start_percent: float, end_percent: float,
prev_custom_cfg: CustomCFGKeyframeGroup=None, cfg_extras: CFGExtrasGroup=None,
print_keyframes=False):
if not prev_custom_cfg:
prev_custom_cfg = CustomCFGKeyframeGroup()
prev_custom_cfg = prev_custom_cfg.clone()
if type(cfgs_float) in (float, int):
cfgs_float = [float(cfgs_float)]
elif isinstance(cfgs_float, Iterable):
pass
else:
raise Exception(f"strengths_float must be either an interable input or a float, but was {type(cfgs_float).__repr__}.")
percents = InterpolationMethod.get_weights(num_from=start_percent, num_to=end_percent, length=len(cfgs_float), method=InterpolationMethod.LINEAR)
is_first = True
for percent, cfg in zip(percents, cfgs_float):
guarantee_steps = 0
if is_first:
guarantee_steps = 1
is_first = False
prev_custom_cfg.add(CustomCFGKeyframe(cfg_multival=float(cfg), start_percent=percent, guarantee_steps=guarantee_steps, cfg_extras=cfg_extras))
if print_keyframes:
logger.info(f"CustomCFGKeyframe - start_percent:{percent} = {cfg}")
return (prev_custom_cfg,)
class CFGExtrasPAGNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"scale_multival": ("MULTIVAL",),
},
"optional": {
"prev_extras": ("CFG_EXTRAS",),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CFG_EXTRAS",)
FUNCTION = "add_cfg_extras"
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/sample settings/cfg extras"
def add_cfg_extras(self, scale_multival: Union[float, Tensor], prev_extras: CFGExtrasGroup=None):
if prev_extras is None:
prev_extras = CFGExtrasGroup()
prev_extras = prev_extras.clone()
patch = perturbed_attention_guidance_patch(scale_multival)
def call_extras(model_options: dict[str]):
return set_model_options_post_cfg_function(model_options.copy(), patch)
extra = CFGExtras(call_extras)
prev_extras.add(extra)
return (prev_extras,)
class CFGExtrasPAGSimpleNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"scale": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 100.0, "step": 0.1, "round": 0.01}),
},
"optional": {
"prev_extras": ("CFG_EXTRAS",),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("CFG_EXTRAS",)
FUNCTION = "add_cfg_extras"
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/sample settings/cfg extras"
def add_cfg_extras(self, scale: float, prev_extras: CFGExtrasGroup=None):
return CFGExtrasPAGNode.add_cfg_extras(self, scale_multival=scale, prev_extras=prev_extras)
class CFGExtrasRescaleCFGNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"mult_multival": ("MULTIVAL",),
},
"optional": {
"prev_extras": ("CFG_EXTRAS",),
}
}
RETURN_TYPES = ("CFG_EXTRAS",)
FUNCTION = "add_cfg_extras"
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/sample settings/cfg extras"
def add_cfg_extras(self, mult_multival: Union[float, Tensor], prev_extras: CFGExtrasGroup=None):
if prev_extras is None:
prev_extras = CFGExtrasGroup()
prev_extras = prev_extras.clone()
patch = rescale_cfg_patch(mult_multival)
def call_extras(model_options: dict[str]):
return set_model_options_sampler_cfg_function(model_options.copy(), patch)
extra = CFGExtras(call_extras)
prev_extras.add(extra)
return (prev_extras,)
class CFGExtrasRescaleCFGSimpleNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"multiplier": ("FLOAT", {"default": 0.7, "min": 0.0, "max": 1.0, "step": 0.01}),
},
"optional": {
"prev_extras": ("CFG_EXTRAS",),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 10}),
}
}
RETURN_TYPES = ("CFG_EXTRAS",)
FUNCTION = "add_cfg_extras"
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/sample settings/cfg extras"
def add_cfg_extras(self, multiplier: float, prev_extras: CFGExtrasGroup=None):
return CFGExtrasRescaleCFGNode.add_cfg_extras(self, mult_multival=multiplier, prev_extras=prev_extras)
class NoisedImageInjectionNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE", ),
"vae": ("VAE", ),
},
"optional": {
"mask_opt": ("MASK", ),
"invert_mask": ("BOOLEAN", {"default": False}),
"resize_image": ("BOOLEAN", {"default": True}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
"guarantee_steps": ("INT", {"default": 1, "min": 1, "max": BIGMAX}),
"img_inject_opts": ("IMAGE_INJECT_OPTIONS", ),
"strength_multival": ("MULTIVAL", ),
"prev_image_inject": ("IMAGE_INJECT", ),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("IMAGE_INJECT",)
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/sample settings/image inject"
FUNCTION = "create_image_inject"
def create_image_inject(self, image: Tensor, vae: VAE, invert_mask: bool, resize_image: bool, start_percent: float,
mask_opt: Tensor=None, strength_multival: Union[float, Tensor]=None, prev_image_inject: NoisedImageToInjectGroup=None, guarantee_steps=1,
img_inject_opts=None):
if not prev_image_inject:
prev_image_inject = NoisedImageToInjectGroup()
prev_image_inject = prev_image_inject.clone()
to_inject = NoisedImageToInject(image=image, mask=mask_opt, vae=vae, invert_mask=invert_mask, resize_image=resize_image, strength_multival=strength_multival,
start_percent=start_percent, guarantee_steps=guarantee_steps,
img_inject_opts=img_inject_opts)
prev_image_inject.add(to_inject)
return (prev_image_inject,)
class NoisedImageInjectOptionsNode:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
},
"optional": {
"composite_x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
"composite_y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
},
"hidden": {
"autosize": ("ADEAUTOSIZE", {"padding": 0}),
}
}
RETURN_TYPES = ("IMAGE_INJECT_OPTIONS",)
RETURN_NAMES = ("IMG_INJECT_OPTS",)
CATEGORY = "Animate Diff πŸŽ­πŸ…πŸ…“/sample settings/image inject"
FUNCTION = "create_image_inject_opts"
def create_image_inject_opts(self, x=0, y=0):
return (NoisedImageInjectOptions(x=x, y=y),)