|
from typing import Union |
|
|
|
from .documentation import register_description, short_desc, coll, DocHelper |
|
from .scheduling import (evaluate_prompt_schedule, evaluate_value_schedule, TensorInterp, PromptOptions, |
|
verify_key_value) |
|
from .utils_model import BIGMAX |
|
from .logger import logger |
|
|
|
|
|
desc_values = {coll('values'): 'Write your values here.'} |
|
desc_prompts = {coll('prompts'): 'Write your prompts here.'} |
|
desc_clip = {'clip': 'CLIP to use for encoding prompts.'} |
|
desc_latent = {'latent': 'Used to get the amount of frames (max_length) to use for scheduling.'} |
|
|
|
desc_prepend_text = {'prepend_text': 'OPTIONAL, adds text before all prompts.'} |
|
desc_append_text = {'append_text': 'OPTIONAL, adds text after all prompts.'} |
|
desc_values_replace = {'values_replace': 'OPTIONAL, replaces keys from value_replace keys with provided value schedules. Keys in the prompt are written as `some_key`, surrounded by the ` characters.'} |
|
desc_tensor_interp = {'tensor_interp': 'Selects method of interpolating prompt conds - defaults to lerp.'} |
|
desc_print_schedule = {'print_schedule': 'When True, prints output values for each frame.'} |
|
|
|
desc_max_length = {'max_length': 'Used to select the intended length of schedule. If set to 0, will use the largest index in the schedule as max_length, but will disable relative indexes (negative and decimal).'} |
|
desc_floats = {'floats': 'List of floats, likely outputted by a Value Scheduling node.'} |
|
desc_FLOAT = {'FLOAT': 'Float (or list of floats) to convert to FLOATS type.'} |
|
desc_value_key = {'value_key': 'Key to use for value schedule in Prompt Scheduling node. Can only contain a-z, A-Z, 0-9, and _ characters. In Prompt Scheduling, keys can be referred to as `some_key`, where the key is surrounded by ` characters.'} |
|
desc_prev_replace = {'prev_replace': 'OPTIONAL, other values_replace can be chained.'} |
|
|
|
desc_output_conditioning = {'CONDITIONING': 'Encoded prompts.'} |
|
desc_output_latent = {'LATENT': 'Unmodified input latents; can be used as pipe, or can be ignored.'} |
|
|
|
desc_format_allowed_idxs = {'allowed idxs': |
|
{'single': 'A positive integer (e.g. 0, 2) schedules value for frame. A negative integer (e.g. -1, -5) schedules value for frame from the end (-1 would be the last frame). ' + |
|
'A decimal (e.g. 0.5, 1.0) selects frame based relative location in whole schedule (0.5 would be halfway, 1.0 would be last frame).', |
|
'range': 'Using rules above, single:single chooses uninterpolated prompts from start idx (included) to end idx (excluded). Examples -> 0:12, 0:-5, 2:0.5', |
|
'hold': 'Putting a colon after a single idx stops interpolation until the next provided index. Examples -> 0:, 0.5:, 16: '} |
|
} |
|
|
|
desc_format_prompt = [ |
|
'Scheduling supports two formats: JSON and pythonic.', |
|
{'JSON': ['"idx": "your prompt here", ...'], |
|
'pythonic': ['idx = "your prompt here", ...']}, |
|
'The idx is the index of the frame - first frame is 0, last frame is max_frames-1. An idx may be the following:', |
|
desc_format_allowed_idxs, |
|
'The prompts themselves should be surrounded by double quotes ("your prompt here"). Portions of prompts can use value schedules provided values_replace.', |
|
{'JSON': ['"0": "blue rock on mountain",', '"16": "green rock in lake"'], |
|
'pythonic': ['0 = "blue rock on mountain",', '16 = "green rock in lake"']} |
|
] |
|
|
|
desc_format_values = [ |
|
'Scheduling supports two formats: JSON and pythonic.', |
|
{'JSON': ['"idx": float/int_value, ...'], |
|
'pythonic': ['idx = float/int_value, ...']}, |
|
'The idx is the index of the frame - first frame is 0, last frame is max_frames-1. An idx may be the following:', |
|
desc_format_allowed_idxs, |
|
'The values can be written without any special formatting.', |
|
{'JSON': ['"0": 1.0,', '"16": 1.3'], |
|
'pythonic': ['0 = 1.0,', '16 = 1.3']} |
|
] |
|
|
|
|
|
class PromptSchedulingLatentsNode: |
|
NodeID = 'ADE_PromptSchedulingLatents' |
|
NodeName = 'Prompt Scheduling [Latents] ππ
π
' |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"prompts": ("STRING", {"multiline": True, "default": ''}), |
|
"clip": ("CLIP",), |
|
"latent": ("LATENT",), |
|
}, |
|
"optional": { |
|
"prepend_text": ("STRING", {"multiline": True, "default": '', "forceInput": True}), |
|
"append_text": ("STRING", {"multiline": True, "default": '', "forceInput": True}), |
|
"values_replace": ("VALUES_REPLACE",), |
|
"print_schedule": ("BOOLEAN", {"default": False}), |
|
"tensor_interp": (TensorInterp._LIST,) |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("CONDITIONING", "LATENT",) |
|
CATEGORY = "Animate Diff ππ
π
/scheduling" |
|
FUNCTION = "create_schedule" |
|
|
|
Desc = [ |
|
short_desc('Encode a schedule of prompts with automatic interpolation, its length matching passed-in latent count.'), |
|
{'Format': desc_format_prompt}, |
|
{coll('Inputs'): DocHelper.combine(desc_prompts, desc_clip, desc_latent, desc_values_replace, desc_prepend_text, desc_append_text, desc_tensor_interp, desc_print_schedule)}, |
|
{coll('Outputs'): DocHelper.combine(desc_output_conditioning, desc_output_latent)} |
|
] |
|
register_description(NodeID, Desc) |
|
|
|
def create_schedule(self, prompts: str, clip, latent: dict, print_schedule=False, tensor_interp=TensorInterp.LERP, |
|
prepend_text='', append_text='', values_replace=None): |
|
options = PromptOptions(interp=tensor_interp, prepend_text=prepend_text, append_text=append_text, |
|
values_replace=values_replace, print_schedule=print_schedule) |
|
conditioning = evaluate_prompt_schedule(prompts, latent["samples"].size(0), clip, options) |
|
return (conditioning, latent) |
|
|
|
|
|
class PromptSchedulingNode: |
|
NodeID = 'ADE_PromptScheduling' |
|
NodeName = 'Prompt Scheduling ππ
π
' |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"prompts": ("STRING", {"multiline": True, "default": ''}), |
|
"clip": ("CLIP",), |
|
}, |
|
"optional": { |
|
"prepend_text": ("STRING", {"multiline": True, "default": '', "forceInput": True}), |
|
"append_text": ("STRING", {"multiline": True, "default": '', "forceInput": True}), |
|
"values_replace": ("VALUES_REPLACE",), |
|
"print_schedule": ("BOOLEAN", {"default": False}), |
|
"max_length": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}), |
|
"tensor_interp": (TensorInterp._LIST,) |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("CONDITIONING",) |
|
CATEGORY = "Animate Diff ππ
π
/scheduling" |
|
FUNCTION = "create_schedule" |
|
|
|
Desc = [ |
|
short_desc('Encode a schedule of prompts with automatic interpolation.'), |
|
{'Format': desc_format_prompt}, |
|
{coll('Inputs'): DocHelper.combine(desc_prompts, desc_clip, desc_values_replace, desc_prepend_text, desc_append_text, desc_max_length, desc_tensor_interp, desc_print_schedule)}, |
|
{coll('Outputs'): DocHelper.combine(desc_output_conditioning)} |
|
] |
|
register_description(NodeID, Desc) |
|
|
|
def create_schedule(self, prompts: str, clip, print_schedule=False, max_length: int=0, tensor_interp=TensorInterp.LERP, |
|
prepend_text='', append_text='', values_replace=None): |
|
options = PromptOptions(interp=tensor_interp, prepend_text=prepend_text, append_text=append_text, |
|
values_replace=values_replace, print_schedule=print_schedule) |
|
conditioning = evaluate_prompt_schedule(prompts, max_length, clip, options) |
|
return (conditioning,) |
|
|
|
|
|
class ValueSchedulingLatentsNode: |
|
NodeID = 'ADE_ValueSchedulingLatents' |
|
NodeName = 'Value Scheduling [Latents] ππ
π
' |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"values": ("STRING", {"multiline": True, "default": ""}), |
|
"latent": ("LATENT",), |
|
}, |
|
"optional": { |
|
"print_schedule": ("BOOLEAN", {"default": False}), |
|
}, |
|
"hidden": { |
|
"autosize": ("ADEAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("FLOAT", "FLOATS", "INT", "INTS") |
|
CATEGORY = "Animate Diff ππ
π
/scheduling" |
|
FUNCTION = "create_schedule" |
|
|
|
Desc = [ |
|
short_desc('Create a list of values with automatic interpolation, its length matching passed-in latent count.'), |
|
{'Format': desc_format_values}, |
|
{coll('Inputs'): DocHelper.combine(desc_values, desc_latent, desc_print_schedule)}, |
|
] |
|
register_description(NodeID, Desc) |
|
|
|
def create_schedule(self, values: str, latent: dict, print_schedule=False): |
|
float_vals = evaluate_value_schedule(values, latent["samples"].size(0)) |
|
int_vals = [round(x) for x in float_vals] |
|
if print_schedule: |
|
logger.info(f"ValueScheduling ({len(float_vals)} values):") |
|
for i, val in enumerate(float_vals): |
|
logger.info(f"{i} = {val}") |
|
return (float_vals, float_vals, int_vals, int_vals) |
|
|
|
|
|
class ValueSchedulingNode: |
|
NodeID = 'ADE_ValueScheduling' |
|
NodeName = 'Value Scheduling ππ
π
' |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"values": ("STRING", {"multiline": True, "default": ""}), |
|
}, |
|
"optional": { |
|
"print_schedule": ("BOOLEAN", {"default": False}), |
|
"max_length": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}), |
|
}, |
|
"hidden": { |
|
"autosize": ("ADEAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("FLOAT", "FLOATS", "INT", "INTS") |
|
CATEGORY = "Animate Diff ππ
π
/scheduling" |
|
FUNCTION = "create_schedule" |
|
|
|
Desc = [ |
|
short_desc('Create a list of values with automatic interpolation.'), |
|
{'Format': desc_format_values}, |
|
{coll('Inputs'): DocHelper.combine(desc_values, desc_max_length, desc_print_schedule)}, |
|
] |
|
register_description(NodeID, Desc) |
|
|
|
def create_schedule(self, values: str, max_length: int, print_schedule=False): |
|
float_vals = evaluate_value_schedule(values, max_length) |
|
int_vals = [round(x) for x in float_vals] |
|
if print_schedule: |
|
logger.info(f"ValueScheduling ({len(float_vals)} values):") |
|
for i, val in enumerate(float_vals): |
|
logger.info(f"{i} = {val}") |
|
return (float_vals, float_vals, int_vals, int_vals) |
|
|
|
|
|
class AddValuesReplaceNode: |
|
NodeID = 'ADE_ValuesReplace' |
|
NodeName = 'Add Values Replace ππ
π
' |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"value_key": ("STRING", {"default": ""}), |
|
"floats": ("FLOATS",) |
|
}, |
|
"optional": { |
|
"prev_replace": ("VALUES_REPLACE",), |
|
}, |
|
"hidden": { |
|
"autosize": ("ADEAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("VALUES_REPLACE",) |
|
CATEGORY = "Animate Diff ππ
π
/scheduling" |
|
FUNCTION = "add_values_replace" |
|
|
|
Desc = [ |
|
short_desc('Add a values schedule bound to a key to be used in Prompt Scheduling node.'), |
|
{'Inputs': DocHelper.combine(desc_value_key, desc_floats, desc_prev_replace)}, |
|
] |
|
register_description(NodeID, Desc) |
|
|
|
def add_values_replace(self, value_key: str, floats: Union[list[float]], prev_replace: dict=None): |
|
|
|
verify_key_value(key=value_key) |
|
|
|
if prev_replace is None: |
|
prev_replace = {} |
|
prev_replace = prev_replace.copy() |
|
if value_key in prev_replace: |
|
logger.warn(f"Value key '{value_key}' is already present - corresponding floats value will be overriden.") |
|
prev_replace[value_key] = floats |
|
return (prev_replace,) |
|
|
|
|
|
class FloatToFloatsNode: |
|
NodeID = 'ADE_FloatToFloats' |
|
NodeName = 'Float to Floats ππ
π
' |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"FLOAT": ("FLOAT", {"default": 39, "forceInput": True}), |
|
}, |
|
"hidden": { |
|
"autosize": ("ADEAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("FLOATS",) |
|
CATEGORY = "Animate Diff ππ
π
/scheduling" |
|
FUNCTION = "convert_to_floats" |
|
|
|
def convert_to_floats(self, FLOAT: Union[float, list[float]]): |
|
floats = None |
|
if isinstance(FLOAT, float): |
|
floats = [float(FLOAT)] |
|
else: |
|
floats = list(FLOAT) |
|
return (floats,) |