|
import torch |
|
|
|
import comfy.samplers |
|
|
|
from .utils_model import BetaSchedules, SigmaSchedule, ModelSamplingType, ModelSamplingConfig, InterpolationMethod |
|
|
|
|
|
def validate_sigma_schedule_compatibility(schedule_A: SigmaSchedule, schedule_B: SigmaSchedule, |
|
name_a: str="sigma_schedule_A", name_b: str="sigma_schedule_B"): |
|
if schedule_A.total_sigmas() != schedule_B.total_sigmas(): |
|
raise Exception(f"Weighted Average cannot be taken of Sigma Schedules that do not have the same amount of sigmas; " + |
|
f"{name_a} has {schedule_A.total_sigmas()} sigmas (lcm={schedule_A.is_lcm()}), " + |
|
f"{name_b} has {schedule_B.total_sigmas()} sigmas (lcm={schedule_B.is_lcm()}).") |
|
|
|
|
|
class SigmaScheduleNode: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"beta_schedule": (BetaSchedules.ALIAS_ACTIVE_LIST,), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("SIGMA_SCHEDULE",) |
|
CATEGORY = "Animate Diff ππ
π
/sample settings/sigma schedule" |
|
FUNCTION = "get_sigma_schedule" |
|
|
|
def get_sigma_schedule(self, beta_schedule: str): |
|
model_type = ModelSamplingType.from_alias(ModelSamplingType.EPS) |
|
new_model_sampling = BetaSchedules._to_model_sampling(alias=beta_schedule, |
|
model_type=model_type) |
|
return (SigmaSchedule(model_sampling=new_model_sampling, model_type=model_type),) |
|
|
|
|
|
class RawSigmaScheduleNode: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"raw_beta_schedule": (BetaSchedules.RAW_BETA_SCHEDULE_LIST,), |
|
"linear_start": ("FLOAT", {"default": 0.00085, "min": 0.0, "max": 1.0, "step": 0.000001}), |
|
"linear_end": ("FLOAT", {"default": 0.012, "min": 0.0, "max": 1.0, "step": 0.000001}), |
|
|
|
"sampling": (ModelSamplingType._FULL_LIST,), |
|
"lcm_original_timesteps": ("INT", {"default": 50, "min": 1, "max": 1000}), |
|
"zsnr": ("BOOLEAN", {"default": False}), |
|
}, |
|
"hidden": { |
|
"autosize": ("ADEAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("SIGMA_SCHEDULE",) |
|
CATEGORY = "Animate Diff ππ
π
/sample settings/sigma schedule" |
|
FUNCTION = "get_sigma_schedule" |
|
|
|
def get_sigma_schedule(self, raw_beta_schedule: str, linear_start: float, linear_end: float, |
|
sampling: str, lcm_original_timesteps: int, zsnr: bool, lcm_zsnr: bool=None): |
|
if lcm_zsnr is not None: |
|
zsnr = lcm_zsnr |
|
|
|
|
|
|
|
|
|
|
|
new_config = ModelSamplingConfig(beta_schedule=raw_beta_schedule, linear_start=linear_start, linear_end=linear_end) |
|
if sampling != ModelSamplingType.LCM: |
|
lcm_original_timesteps=None |
|
model_type = ModelSamplingType.from_alias(sampling) |
|
new_model_sampling = BetaSchedules._to_model_sampling(alias=BetaSchedules.AUTOSELECT, model_type=model_type, config_override=new_config, original_timesteps=lcm_original_timesteps) |
|
if zsnr: |
|
SigmaSchedule.apply_zsnr(new_model_sampling=new_model_sampling) |
|
return (SigmaSchedule(model_sampling=new_model_sampling, model_type=model_type),) |
|
|
|
|
|
class WeightedAverageSigmaScheduleNode: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"schedule_A": ("SIGMA_SCHEDULE",), |
|
"schedule_B": ("SIGMA_SCHEDULE",), |
|
"weight_A": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
}, |
|
"hidden": { |
|
"autosize": ("ADEAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("SIGMA_SCHEDULE",) |
|
CATEGORY = "Animate Diff ππ
π
/sample settings/sigma schedule" |
|
FUNCTION = "get_sigma_schedule" |
|
|
|
def get_sigma_schedule(self, schedule_A: SigmaSchedule, schedule_B: SigmaSchedule, weight_A: float): |
|
validate_sigma_schedule_compatibility(schedule_A, schedule_B) |
|
new_sigmas = schedule_A.model_sampling.sigmas * weight_A + schedule_B.model_sampling.sigmas * (1-weight_A) |
|
combo_schedule = schedule_A.clone() |
|
combo_schedule.model_sampling.set_sigmas(new_sigmas) |
|
return (combo_schedule,) |
|
|
|
|
|
class InterpolatedWeightedAverageSigmaScheduleNode: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"schedule_A": ("SIGMA_SCHEDULE",), |
|
"schedule_B": ("SIGMA_SCHEDULE",), |
|
"weight_A_Start": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"weight_A_End": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"interpolation": (InterpolationMethod._LIST,), |
|
}, |
|
"hidden": { |
|
"autosize": ("ADEAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("SIGMA_SCHEDULE",) |
|
CATEGORY = "Animate Diff ππ
π
/sample settings/sigma schedule" |
|
FUNCTION = "get_sigma_schedule" |
|
|
|
def get_sigma_schedule(self, schedule_A: SigmaSchedule, schedule_B: SigmaSchedule, |
|
weight_A_Start: float, weight_A_End: float, interpolation: str): |
|
validate_sigma_schedule_compatibility(schedule_A, schedule_B) |
|
|
|
weights = InterpolationMethod.get_weights(num_from=weight_A_Start, num_to=weight_A_End, |
|
length=schedule_A.total_sigmas(), method=interpolation, reverse=True) |
|
weights = weights.to(schedule_A.model_sampling.sigmas.dtype).to(schedule_A.model_sampling.sigmas.device) |
|
new_sigmas = schedule_A.model_sampling.sigmas * weights + schedule_B.model_sampling.sigmas * (1.0-weights) |
|
combo_schedule = schedule_A.clone() |
|
combo_schedule.model_sampling.set_sigmas(new_sigmas) |
|
return (combo_schedule,) |
|
|
|
|
|
class SplitAndCombineSigmaScheduleNode: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"schedule_Start": ("SIGMA_SCHEDULE",), |
|
"schedule_End": ("SIGMA_SCHEDULE",), |
|
"idx_split_percent": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.001}) |
|
}, |
|
"hidden": { |
|
"autosize": ("ADEAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("SIGMA_SCHEDULE",) |
|
CATEGORY = "Animate Diff ππ
π
/sample settings/sigma schedule" |
|
FUNCTION = "get_sigma_schedule" |
|
|
|
def get_sigma_schedule(self, schedule_Start: SigmaSchedule, schedule_End: SigmaSchedule, idx_split_percent: float): |
|
validate_sigma_schedule_compatibility(schedule_Start, schedule_End) |
|
|
|
idx = int((1.0-idx_split_percent) * schedule_Start.total_sigmas()) |
|
new_sigmas = torch.cat([schedule_End.model_sampling.sigmas[:idx], schedule_Start.model_sampling.sigmas[idx:]], dim=0) |
|
new_schedule = schedule_Start.clone() |
|
new_schedule.model_sampling.set_sigmas(new_sigmas) |
|
return (new_schedule,) |
|
|
|
|
|
class SigmaScheduleToSigmasNode: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"sigma_schedule": ("SIGMA_SCHEDULE",), |
|
"scheduler": (comfy.samplers.SCHEDULER_NAMES, ), |
|
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}), |
|
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
}, |
|
"hidden": { |
|
"autosize": ("ADEAUTOSIZE", {"padding": 0}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("SIGMAS",) |
|
CATEGORY = "Animate Diff ππ
π
/sample settings/sigma schedule" |
|
FUNCTION = "get_sigmas" |
|
|
|
def get_sigmas(self, sigma_schedule: SigmaSchedule, scheduler: str, steps: int, denoise: float): |
|
total_steps = steps |
|
if denoise < 1.0: |
|
if denoise <= 0.0: |
|
return (torch.FloatTensor([]),) |
|
total_steps = int(steps/denoise) |
|
|
|
sigmas = comfy.samplers.calculate_sigmas(sigma_schedule, scheduler, total_steps).cpu() |
|
sigmas = sigmas[-(steps + 1):] |
|
return (sigmas, ) |
|
|