|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from typing import Tuple, Union, Optional |
|
from diffusers.models.embeddings import get_3d_sincos_pos_embed, get_1d_rotary_pos_embed |
|
|
|
|
|
class CogVideoXPatchEmbed(nn.Module): |
|
def __init__( |
|
self, |
|
patch_size: int = 2, |
|
patch_size_t: Optional[int] = None, |
|
in_channels: int = 16, |
|
embed_dim: int = 1920, |
|
text_embed_dim: int = 4096, |
|
bias: bool = True, |
|
sample_width: int = 90, |
|
sample_height: int = 60, |
|
sample_frames: int = 49, |
|
temporal_compression_ratio: int = 4, |
|
max_text_seq_length: int = 226, |
|
spatial_interpolation_scale: float = 1.875, |
|
temporal_interpolation_scale: float = 1.0, |
|
use_positional_embeddings: bool = True, |
|
use_learned_positional_embeddings: bool = True, |
|
) -> None: |
|
super().__init__() |
|
|
|
self.patch_size = patch_size |
|
self.patch_size_t = patch_size_t |
|
self.embed_dim = embed_dim |
|
self.sample_height = sample_height |
|
self.sample_width = sample_width |
|
self.sample_frames = sample_frames |
|
self.temporal_compression_ratio = temporal_compression_ratio |
|
self.max_text_seq_length = max_text_seq_length |
|
self.spatial_interpolation_scale = spatial_interpolation_scale |
|
self.temporal_interpolation_scale = temporal_interpolation_scale |
|
self.use_positional_embeddings = use_positional_embeddings |
|
self.use_learned_positional_embeddings = use_learned_positional_embeddings |
|
|
|
if patch_size_t is None: |
|
|
|
self.proj = nn.Conv2d( |
|
in_channels, embed_dim, kernel_size=(patch_size, patch_size), stride=patch_size, bias=bias |
|
) |
|
else: |
|
|
|
self.proj = nn.Linear(in_channels * patch_size * patch_size * patch_size_t, embed_dim) |
|
|
|
self.text_proj = nn.Linear(text_embed_dim, embed_dim) |
|
|
|
if use_positional_embeddings or use_learned_positional_embeddings: |
|
persistent = use_learned_positional_embeddings |
|
pos_embedding = self._get_positional_embeddings(sample_height, sample_width, sample_frames) |
|
self.register_buffer("pos_embedding", pos_embedding, persistent=persistent) |
|
|
|
def _get_positional_embeddings(self, sample_height: int, sample_width: int, sample_frames: int) -> torch.Tensor: |
|
post_patch_height = sample_height // self.patch_size |
|
post_patch_width = sample_width // self.patch_size |
|
post_time_compression_frames = (sample_frames - 1) // self.temporal_compression_ratio + 1 |
|
num_patches = post_patch_height * post_patch_width * post_time_compression_frames |
|
|
|
pos_embedding = get_3d_sincos_pos_embed( |
|
self.embed_dim, |
|
(post_patch_width, post_patch_height), |
|
post_time_compression_frames, |
|
self.spatial_interpolation_scale, |
|
self.temporal_interpolation_scale, |
|
) |
|
pos_embedding = torch.from_numpy(pos_embedding).flatten(0, 1) |
|
joint_pos_embedding = torch.zeros( |
|
1, self.max_text_seq_length + num_patches, self.embed_dim, requires_grad=False |
|
) |
|
joint_pos_embedding.data[:, self.max_text_seq_length :].copy_(pos_embedding) |
|
|
|
return joint_pos_embedding |
|
|
|
def forward(self, text_embeds: torch.Tensor, image_embeds: torch.Tensor): |
|
r""" |
|
Args: |
|
text_embeds (`torch.Tensor`): |
|
Input text embeddings. Expected shape: (batch_size, seq_length, embedding_dim). |
|
image_embeds (`torch.Tensor`): |
|
Input image embeddings. Expected shape: (batch_size, num_frames, channels, height, width). |
|
""" |
|
text_embeds = self.text_proj(text_embeds) |
|
|
|
batch_size, num_frames, channels, height, width = image_embeds.shape |
|
|
|
if self.patch_size_t is None: |
|
image_embeds = image_embeds.reshape(-1, channels, height, width) |
|
image_embeds = self.proj(image_embeds) |
|
image_embeds = image_embeds.view(batch_size, num_frames, *image_embeds.shape[1:]) |
|
image_embeds = image_embeds.flatten(3).transpose(2, 3) |
|
image_embeds = image_embeds.flatten(1, 2) |
|
else: |
|
p = self.patch_size |
|
p_t = self.patch_size_t |
|
|
|
image_embeds = image_embeds.permute(0, 1, 3, 4, 2) |
|
image_embeds = image_embeds.reshape( |
|
batch_size, num_frames // p_t, p_t, height // p, p, width // p, p, channels |
|
) |
|
image_embeds = image_embeds.permute(0, 1, 3, 5, 7, 2, 4, 6).flatten(4, 7).flatten(1, 3) |
|
image_embeds = self.proj(image_embeds) |
|
|
|
embeds = torch.cat( |
|
[text_embeds, image_embeds], dim=1 |
|
).contiguous() |
|
|
|
if self.use_positional_embeddings or self.use_learned_positional_embeddings: |
|
if self.use_learned_positional_embeddings and (self.sample_width != width or self.sample_height != height): |
|
raise ValueError( |
|
"It is currently not possible to generate videos at a different resolution that the defaults. This should only be the case with 'THUDM/CogVideoX-5b-I2V'." |
|
"If you think this is incorrect, please open an issue at https://github.com/huggingface/diffusers/issues." |
|
) |
|
|
|
pre_time_compression_frames = (num_frames - 1) * self.temporal_compression_ratio + 1 |
|
|
|
if ( |
|
self.sample_height != height |
|
or self.sample_width != width |
|
or self.sample_frames != pre_time_compression_frames |
|
): |
|
pos_embedding = self._get_positional_embeddings(height, width, pre_time_compression_frames) |
|
pos_embedding = pos_embedding.to(embeds.device, dtype=embeds.dtype) |
|
else: |
|
pos_embedding = self.pos_embedding |
|
|
|
embeds = embeds + pos_embedding |
|
|
|
return embeds |
|
|
|
def get_3d_rotary_pos_embed( |
|
embed_dim, |
|
crops_coords, |
|
grid_size, |
|
temporal_size, |
|
theta: int = 10000, |
|
use_real: bool = True, |
|
grid_type: str = "linspace", |
|
max_size: Optional[Tuple[int, int]] = None, |
|
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: |
|
""" |
|
RoPE for video tokens with 3D structure. |
|
|
|
Args: |
|
embed_dim: (`int`): |
|
The embedding dimension size, corresponding to hidden_size_head. |
|
crops_coords (`Tuple[int]`): |
|
The top-left and bottom-right coordinates of the crop. |
|
grid_size (`Tuple[int]`): |
|
The grid size of the spatial positional embedding (height, width). |
|
temporal_size (`int`): |
|
The size of the temporal dimension. |
|
theta (`float`): |
|
Scaling factor for frequency computation. |
|
grid_type (`str`): |
|
Whether to use "linspace" or "slice" to compute grids. |
|
|
|
Returns: |
|
`torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`. |
|
""" |
|
if use_real is not True: |
|
raise ValueError(" `use_real = False` is not currently supported for get_3d_rotary_pos_embed") |
|
|
|
if grid_type == "linspace": |
|
start, stop = crops_coords |
|
grid_size_h, grid_size_w = grid_size |
|
grid_h = np.linspace(start[0], stop[0], grid_size_h, endpoint=False, dtype=np.float32) |
|
grid_w = np.linspace(start[1], stop[1], grid_size_w, endpoint=False, dtype=np.float32) |
|
grid_t = np.arange(temporal_size, dtype=np.float32) |
|
grid_t = np.linspace(0, temporal_size, temporal_size, endpoint=False, dtype=np.float32) |
|
elif grid_type == "slice": |
|
max_h, max_w = max_size |
|
grid_size_h, grid_size_w = grid_size |
|
grid_h = np.arange(max_h, dtype=np.float32) |
|
grid_w = np.arange(max_w, dtype=np.float32) |
|
grid_t = np.arange(temporal_size, dtype=np.float32) |
|
else: |
|
raise ValueError("Invalid value passed for `grid_type`.") |
|
|
|
|
|
dim_t = embed_dim // 4 |
|
dim_h = embed_dim // 8 * 3 |
|
dim_w = embed_dim // 8 * 3 |
|
|
|
|
|
freqs_t = get_1d_rotary_pos_embed(dim_t, grid_t, use_real=True) |
|
|
|
freqs_h = get_1d_rotary_pos_embed(dim_h, grid_h, use_real=True) |
|
freqs_w = get_1d_rotary_pos_embed(dim_w, grid_w, use_real=True) |
|
|
|
|
|
def combine_time_height_width(freqs_t, freqs_h, freqs_w): |
|
freqs_t = freqs_t[:, None, None, :].expand( |
|
-1, grid_size_h, grid_size_w, -1 |
|
) |
|
freqs_h = freqs_h[None, :, None, :].expand( |
|
temporal_size, -1, grid_size_w, -1 |
|
) |
|
freqs_w = freqs_w[None, None, :, :].expand( |
|
temporal_size, grid_size_h, -1, -1 |
|
) |
|
|
|
freqs = torch.cat( |
|
[freqs_t, freqs_h, freqs_w], dim=-1 |
|
) |
|
freqs = freqs.view( |
|
temporal_size * grid_size_h * grid_size_w, -1 |
|
) |
|
return freqs |
|
|
|
t_cos, t_sin = freqs_t |
|
h_cos, h_sin = freqs_h |
|
w_cos, w_sin = freqs_w |
|
|
|
if grid_type == "slice": |
|
t_cos, t_sin = t_cos[:temporal_size], t_sin[:temporal_size] |
|
h_cos, h_sin = h_cos[:grid_size_h], h_sin[:grid_size_h] |
|
w_cos, w_sin = w_cos[:grid_size_w], w_sin[:grid_size_w] |
|
|
|
cos = combine_time_height_width(t_cos, h_cos, w_cos) |
|
sin = combine_time_height_width(t_sin, h_sin, w_sin) |
|
return cos, sin |