|
import os |
|
import torch |
|
import json |
|
from einops import rearrange |
|
from contextlib import nullcontext |
|
|
|
from .utils import log, check_diffusers_version, print_memory |
|
check_diffusers_version() |
|
from diffusers.schedulers import ( |
|
CogVideoXDDIMScheduler, |
|
CogVideoXDPMScheduler, |
|
DDIMScheduler, |
|
PNDMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerDiscreteScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
UniPCMultistepScheduler, |
|
HeunDiscreteScheduler, |
|
SASolverScheduler, |
|
DEISMultistepScheduler, |
|
LCMScheduler |
|
) |
|
|
|
scheduler_mapping = { |
|
"DPM++": DPMSolverMultistepScheduler, |
|
"Euler": EulerDiscreteScheduler, |
|
"Euler A": EulerAncestralDiscreteScheduler, |
|
"PNDM": PNDMScheduler, |
|
"DDIM": DDIMScheduler, |
|
"CogVideoXDDIM": CogVideoXDDIMScheduler, |
|
"CogVideoXDPMScheduler": CogVideoXDPMScheduler, |
|
"SASolverScheduler": SASolverScheduler, |
|
"UniPCMultistepScheduler": UniPCMultistepScheduler, |
|
"HeunDiscreteScheduler": HeunDiscreteScheduler, |
|
"DEISMultistepScheduler": DEISMultistepScheduler, |
|
"LCMScheduler": LCMScheduler |
|
} |
|
available_schedulers = list(scheduler_mapping.keys()) |
|
|
|
from diffusers.video_processor import VideoProcessor |
|
|
|
import folder_paths |
|
import comfy.model_management as mm |
|
|
|
script_directory = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
if not "CogVideo" in folder_paths.folder_names_and_paths: |
|
folder_paths.add_model_folder_path("CogVideo", os.path.join(folder_paths.models_dir, "CogVideo")) |
|
if not "cogvideox_loras" in folder_paths.folder_names_and_paths: |
|
folder_paths.add_model_folder_path("cogvideox_loras", os.path.join(folder_paths.models_dir, "CogVideo", "loras")) |
|
|
|
class CogVideoContextOptions: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"context_schedule": (["uniform_standard", "uniform_looped", "static_standard"],), |
|
"context_frames": ("INT", {"default": 48, "min": 2, "max": 100, "step": 1, "tooltip": "Number of pixel frames in the context, NOTE: the latent space has 4 frames in 1"} ), |
|
"context_stride": ("INT", {"default": 4, "min": 4, "max": 100, "step": 1, "tooltip": "Context stride as pixel frames, NOTE: the latent space has 4 frames in 1"} ), |
|
"context_overlap": ("INT", {"default": 4, "min": 4, "max": 100, "step": 1, "tooltip": "Context overlap as pixel frames, NOTE: the latent space has 4 frames in 1"} ), |
|
"freenoise": ("BOOLEAN", {"default": True, "tooltip": "Shuffle the noise"}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("COGCONTEXT", ) |
|
RETURN_NAMES = ("context_options",) |
|
FUNCTION = "process" |
|
CATEGORY = "CogVideoWrapper" |
|
|
|
def process(self, context_schedule, context_frames, context_stride, context_overlap, freenoise): |
|
context_options = { |
|
"context_schedule":context_schedule, |
|
"context_frames":context_frames, |
|
"context_stride":context_stride, |
|
"context_overlap":context_overlap, |
|
"freenoise":freenoise |
|
} |
|
|
|
return (context_options,) |
|
|
|
class CogVideoTransformerEdit: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"remove_blocks": ("STRING", {"default": "15, 25, 37", "multiline": True, "tooltip": "Comma separated list of block indices to remove, 5b blocks: 0-41, 2b model blocks 0-29"} ), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("TRANSFORMERBLOCKS",) |
|
RETURN_NAMES = ("block_list", ) |
|
FUNCTION = "process" |
|
CATEGORY = "CogVideoWrapper" |
|
DESCRIPTION = "EXPERIMENTAL:Remove specific transformer blocks from the model" |
|
|
|
def process(self, remove_blocks): |
|
blocks_to_remove = [int(x.strip()) for x in remove_blocks.split(',')] |
|
log.info(f"Blocks selected for removal: {blocks_to_remove}") |
|
return (blocks_to_remove,) |
|
|
|
class CogVideoXTorchCompileSettings: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"backend": (["inductor","cudagraphs"], {"default": "inductor"}), |
|
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}), |
|
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}), |
|
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}), |
|
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}), |
|
}, |
|
} |
|
RETURN_TYPES = ("COMPILEARGS",) |
|
RETURN_NAMES = ("torch_compile_args",) |
|
FUNCTION = "loadmodel" |
|
CATEGORY = "MochiWrapper" |
|
DESCRIPTION = "torch.compile settings, when connected to the model loader, torch.compile of the selected layers is attempted. Requires Triton and torch 2.5.0 is recommended" |
|
|
|
def loadmodel(self, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit): |
|
|
|
compile_args = { |
|
"backend": backend, |
|
"fullgraph": fullgraph, |
|
"mode": mode, |
|
"dynamic": dynamic, |
|
"dynamo_cache_size_limit": dynamo_cache_size_limit, |
|
} |
|
|
|
return (compile_args, ) |
|
|
|
|
|
class CogVideoTextEncode: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"clip": ("CLIP",), |
|
"prompt": ("STRING", {"default": "", "multiline": True} ), |
|
}, |
|
"optional": { |
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"force_offload": ("BOOLEAN", {"default": True}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("CONDITIONING", "CLIP",) |
|
RETURN_NAMES = ("conditioning", "clip") |
|
FUNCTION = "process" |
|
CATEGORY = "CogVideoWrapper" |
|
|
|
def process(self, clip, prompt, strength=1.0, force_offload=True): |
|
max_tokens = 226 |
|
load_device = mm.text_encoder_device() |
|
offload_device = mm.text_encoder_offload_device() |
|
clip.tokenizer.t5xxl.pad_to_max_length = True |
|
clip.tokenizer.t5xxl.max_length = max_tokens |
|
clip.cond_stage_model.to(load_device) |
|
tokens = clip.tokenize(prompt, return_word_ids=True) |
|
|
|
embeds = clip.encode_from_tokens(tokens, return_pooled=False, return_dict=False) |
|
|
|
if embeds.shape[1] > max_tokens: |
|
raise ValueError(f"Prompt is too long, max tokens supported is {max_tokens} or less, got {embeds.shape[1]}") |
|
embeds *= strength |
|
if force_offload: |
|
clip.cond_stage_model.to(offload_device) |
|
|
|
return (embeds, clip, ) |
|
|
|
class CogVideoTextEncodeCombine: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"conditioning_1": ("CONDITIONING",), |
|
"conditioning_2": ("CONDITIONING",), |
|
"combination_mode": (["average", "weighted_average", "concatenate"], {"default": "weighted_average"}), |
|
"weighted_average_ratio": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("CONDITIONING",) |
|
RETURN_NAMES = ("conditioning",) |
|
FUNCTION = "process" |
|
CATEGORY = "CogVideoWrapper" |
|
|
|
def process(self, conditioning_1, conditioning_2, combination_mode, weighted_average_ratio): |
|
if conditioning_1.shape != conditioning_2.shape: |
|
raise ValueError("conditioning_1 and conditioning_2 must have the same shape") |
|
|
|
if combination_mode == "average": |
|
embeds = (conditioning_1 + conditioning_2) / 2 |
|
elif combination_mode == "weighted_average": |
|
embeds = conditioning_1 * (1 - weighted_average_ratio) + conditioning_2 * weighted_average_ratio |
|
elif combination_mode == "concatenate": |
|
embeds = torch.cat((conditioning_1, conditioning_2), dim=-2) |
|
else: |
|
raise ValueError("Invalid combination mode") |
|
|
|
return (embeds, ) |
|
|
|
|
|
|
|
def add_noise_to_reference_video(image, ratio=None): |
|
if ratio is None: |
|
sigma = torch.normal(mean=-3.0, std=0.5, size=(image.shape[0],)).to(image.device) |
|
sigma = torch.exp(sigma).to(image.dtype) |
|
else: |
|
sigma = torch.ones((image.shape[0],)).to(image.device, image.dtype) * ratio |
|
|
|
image_noise = torch.randn_like(image) * sigma[:, None, None, None, None] |
|
image_noise = torch.where(image==-1, torch.zeros_like(image), image_noise) |
|
image = image + image_noise |
|
return image |
|
|
|
class CogVideoImageEncode: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"vae": ("VAE",), |
|
"start_image": ("IMAGE", ), |
|
}, |
|
"optional": { |
|
"end_image": ("IMAGE", ), |
|
"enable_tiling": ("BOOLEAN", {"default": False, "tooltip": "Enable tiling for the VAE to reduce memory usage"}), |
|
"noise_aug_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "Augment image with noise"}), |
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("LATENT",) |
|
RETURN_NAMES = ("samples",) |
|
FUNCTION = "encode" |
|
CATEGORY = "CogVideoWrapper" |
|
|
|
def encode(self, vae, start_image, end_image=None, enable_tiling=False, noise_aug_strength=0.0, strength=1.0, start_percent=0.0, end_percent=1.0): |
|
device = mm.get_torch_device() |
|
offload_device = mm.unet_offload_device() |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
|
|
try: |
|
vae.enable_slicing() |
|
except: |
|
pass |
|
|
|
vae_scaling_factor = vae.config.scaling_factor |
|
|
|
if enable_tiling: |
|
from .mz_enable_vae_encode_tiling import enable_vae_encode_tiling |
|
enable_vae_encode_tiling(vae) |
|
|
|
vae.to(device) |
|
|
|
try: |
|
vae._clear_fake_context_parallel_cache() |
|
except: |
|
pass |
|
|
|
|
|
latents_list = [] |
|
|
|
start_image = (start_image * 2.0 - 1.0).to(vae.dtype).to(device).unsqueeze(0).permute(0, 4, 1, 2, 3) |
|
if noise_aug_strength > 0: |
|
start_image = add_noise_to_reference_video(start_image, ratio=noise_aug_strength) |
|
start_latents = vae.encode(start_image).latent_dist.sample(generator) |
|
start_latents = start_latents.permute(0, 2, 1, 3, 4) |
|
|
|
|
|
if end_image is not None: |
|
end_image = (end_image * 2.0 - 1.0).to(vae.dtype).to(device).unsqueeze(0).permute(0, 4, 1, 2, 3) |
|
if noise_aug_strength > 0: |
|
end_image = add_noise_to_reference_video(end_image, ratio=noise_aug_strength) |
|
end_latents = vae.encode(end_image).latent_dist.sample(generator) |
|
end_latents = end_latents.permute(0, 2, 1, 3, 4) |
|
latents_list = [start_latents, end_latents] |
|
final_latents = torch.cat(latents_list, dim=1) |
|
else: |
|
final_latents = start_latents |
|
|
|
final_latents = final_latents * vae_scaling_factor * strength |
|
|
|
log.info(f"Encoded latents shape: {final_latents.shape}") |
|
vae.to(offload_device) |
|
|
|
return ({ |
|
"samples": final_latents, |
|
"start_percent": start_percent, |
|
"end_percent": end_percent |
|
}, ) |
|
|
|
class CogVideoImageEncodeFunInP: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"vae": ("VAE",), |
|
"start_image": ("IMAGE", ), |
|
"num_frames": ("INT", {"default": 49, "min": 2, "max": 1024, "step": 1}), |
|
}, |
|
"optional": { |
|
"end_image": ("IMAGE", ), |
|
"enable_tiling": ("BOOLEAN", {"default": False, "tooltip": "Enable tiling for the VAE to reduce memory usage"}), |
|
"noise_aug_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "Augment image with noise"}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("LATENT",) |
|
RETURN_NAMES = ("image_cond_latents",) |
|
FUNCTION = "encode" |
|
CATEGORY = "CogVideoWrapper" |
|
|
|
def encode(self, vae, start_image, num_frames, end_image=None, enable_tiling=False, noise_aug_strength=0.0): |
|
|
|
device = mm.get_torch_device() |
|
offload_device = mm.unet_offload_device() |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
|
|
try: |
|
vae.enable_slicing() |
|
except: |
|
pass |
|
|
|
vae_scaling_factor = vae.config.scaling_factor |
|
|
|
if enable_tiling: |
|
from .mz_enable_vae_encode_tiling import enable_vae_encode_tiling |
|
enable_vae_encode_tiling(vae) |
|
|
|
vae.to(device) |
|
|
|
try: |
|
vae._clear_fake_context_parallel_cache() |
|
except: |
|
pass |
|
|
|
if end_image is not None: |
|
|
|
padding = torch.zeros((num_frames - 2, start_image.shape[1], start_image.shape[2], 3), device=end_image.device, dtype=end_image.dtype) * -1 |
|
|
|
input_image = torch.cat([start_image, padding, end_image], dim=0) |
|
else: |
|
|
|
padding = torch.zeros((num_frames - 1, start_image.shape[1], start_image.shape[2], 3), device=start_image.device, dtype=start_image.dtype) * -1 |
|
|
|
input_image = torch.cat([start_image, padding], dim=0) |
|
|
|
input_image = input_image * 2.0 - 1.0 |
|
input_image = input_image.to(vae.dtype).to(device) |
|
input_image = input_image.unsqueeze(0).permute(0, 4, 1, 2, 3) |
|
|
|
B, C, T, H, W = input_image.shape |
|
if noise_aug_strength > 0: |
|
input_image = add_noise_to_reference_video(input_image, ratio=noise_aug_strength) |
|
|
|
bs = 1 |
|
new_mask_pixel_values = [] |
|
for i in range(0, input_image.shape[0], bs): |
|
mask_pixel_values_bs = input_image[i : i + bs] |
|
mask_pixel_values_bs = vae.encode(mask_pixel_values_bs)[0] |
|
mask_pixel_values_bs = mask_pixel_values_bs.mode() |
|
new_mask_pixel_values.append(mask_pixel_values_bs) |
|
masked_image_latents = torch.cat(new_mask_pixel_values, dim = 0) |
|
masked_image_latents = masked_image_latents.permute(0, 2, 1, 3, 4) |
|
|
|
mask = torch.zeros_like(masked_image_latents[:, :, :1, :, :]) |
|
if end_image is not None: |
|
mask[:, -1, :, :, :] = 0 |
|
mask[:, 0, :, :, :] = vae_scaling_factor |
|
|
|
final_latents = masked_image_latents * vae_scaling_factor |
|
|
|
log.info(f"Encoded latents shape: {final_latents.shape}") |
|
vae.to(offload_device) |
|
|
|
return ({ |
|
"samples": final_latents, |
|
"mask": mask |
|
},) |
|
|
|
|
|
from .tora.traj_utils import process_traj, scale_traj_list_to_256 |
|
from torchvision.utils import flow_to_image |
|
|
|
class ToraEncodeTrajectory: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"tora_model": ("TORAMODEL",), |
|
"vae": ("VAE",), |
|
"coordinates": ("STRING", {"forceInput": True}), |
|
"width": ("INT", {"default": 720, "min": 128, "max": 2048, "step": 8}), |
|
"height": ("INT", {"default": 480, "min": 128, "max": 2048, "step": 8}), |
|
"num_frames": ("INT", {"default": 49, "min": 2, "max": 1024, "step": 1}), |
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
}, |
|
"optional": { |
|
"enable_tiling": ("BOOLEAN", {"default": True}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("TORAFEATURES", "IMAGE", ) |
|
RETURN_NAMES = ("tora_trajectory", "video_flow_images", ) |
|
FUNCTION = "encode" |
|
CATEGORY = "CogVideoWrapper" |
|
|
|
def encode(self, vae, width, height, num_frames, coordinates, strength, start_percent, end_percent, tora_model, enable_tiling=False): |
|
check_diffusers_version() |
|
device = mm.get_torch_device() |
|
offload_device = mm.unet_offload_device() |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
|
|
try: |
|
vae.enable_slicing() |
|
except: |
|
pass |
|
try: |
|
vae._clear_fake_context_parallel_cache() |
|
except: |
|
pass |
|
|
|
if enable_tiling: |
|
from .mz_enable_vae_encode_tiling import enable_vae_encode_tiling |
|
enable_vae_encode_tiling(vae) |
|
|
|
if len(coordinates) < 10: |
|
coords_list = [] |
|
for coords in coordinates: |
|
coords = json.loads(coords.replace("'", '"')) |
|
coords = [(coord['x'], coord['y']) for coord in coords] |
|
traj_list_range_256 = scale_traj_list_to_256(coords, width, height) |
|
coords_list.append(traj_list_range_256) |
|
else: |
|
coords = json.loads(coordinates.replace("'", '"')) |
|
coords = [(coord['x'], coord['y']) for coord in coords] |
|
coords_list = scale_traj_list_to_256(coords, width, height) |
|
|
|
|
|
video_flow, points = process_traj(coords_list, num_frames, (height,width), device=device) |
|
video_flow = rearrange(video_flow, "T H W C -> T C H W") |
|
video_flow = flow_to_image(video_flow).unsqueeze_(0).to(device) |
|
video_flow = (rearrange(video_flow / 255.0 * 2 - 1, "B T C H W -> B C T H W").contiguous().to(vae.dtype)) |
|
video_flow_image = rearrange(video_flow, "B C T H W -> (B T) H W C") |
|
|
|
mm.soft_empty_cache() |
|
|
|
|
|
vae.to(device) |
|
video_flow = vae.encode(video_flow).latent_dist.sample(generator) * vae.config.scaling_factor |
|
log.info(f"video_flow shape after encoding: {video_flow.shape}") |
|
vae.to(offload_device) |
|
|
|
tora_model["traj_extractor"].to(device) |
|
|
|
video_flow_features = tora_model["traj_extractor"](video_flow.to(torch.float32)) |
|
tora_model["traj_extractor"].to(offload_device) |
|
video_flow_features = torch.stack(video_flow_features) |
|
|
|
|
|
video_flow_features = video_flow_features * strength |
|
|
|
tora = { |
|
"video_flow_features" : video_flow_features, |
|
"start_percent" : start_percent, |
|
"end_percent" : end_percent, |
|
"traj_extractor" : tora_model["traj_extractor"], |
|
"fuser_list" : tora_model["fuser_list"], |
|
} |
|
|
|
return (tora, video_flow_image.cpu().float()) |
|
|
|
class ToraEncodeOpticalFlow: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"vae": ("VAE",), |
|
"tora_model": ("TORAMODEL",), |
|
"optical_flow": ("IMAGE", ), |
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
}, |
|
|
|
} |
|
|
|
RETURN_TYPES = ("TORAFEATURES",) |
|
RETURN_NAMES = ("tora_trajectory",) |
|
FUNCTION = "encode" |
|
CATEGORY = "CogVideoWrapper" |
|
|
|
def encode(self, vae, optical_flow, strength, tora_model, start_percent, end_percent): |
|
check_diffusers_version() |
|
B, H, W, C = optical_flow.shape |
|
device = mm.get_torch_device() |
|
offload_device = mm.unet_offload_device() |
|
generator = torch.Generator(device=device).manual_seed(0) |
|
|
|
try: |
|
vae.enable_slicing() |
|
except: |
|
pass |
|
|
|
try: |
|
vae._clear_fake_context_parallel_cache() |
|
except: |
|
pass |
|
|
|
video_flow = optical_flow * 2 - 1 |
|
video_flow = rearrange(video_flow, "(B T) H W C -> B C T H W", T=B, B=1) |
|
print(video_flow.shape) |
|
mm.soft_empty_cache() |
|
|
|
|
|
|
|
vae.to(device) |
|
video_flow = video_flow.to(vae.dtype).to(vae.device) |
|
video_flow = vae.encode(video_flow).latent_dist.sample(generator) * vae.config.scaling_factor |
|
vae.to(offload_device) |
|
|
|
video_flow_features = tora_model["traj_extractor"](video_flow.to(torch.float32)) |
|
video_flow_features = torch.stack(video_flow_features) |
|
video_flow_features = video_flow_features * strength |
|
|
|
log.info(f"video_flow shape: {video_flow.shape}") |
|
|
|
tora = { |
|
"video_flow_features" : video_flow_features, |
|
"start_percent" : start_percent, |
|
"end_percent" : end_percent, |
|
"traj_extractor" : tora_model["traj_extractor"], |
|
"fuser_list" : tora_model["fuser_list"], |
|
} |
|
|
|
return (tora, ) |
|
|
|
|
|
|
|
|
|
class CogVideoXFasterCache: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"start_step": ("INT", {"default": 15, "min": 0, "max": 1024, "step": 1}), |
|
"hf_step": ("INT", {"default": 30, "min": 0, "max": 1024, "step": 1}), |
|
"lf_step": ("INT", {"default": 40, "min": 0, "max": 1024, "step": 1}), |
|
"cache_device": (["main_device", "offload_device", "cuda:1"], {"default": "main_device", "tooltip": "The device to use for the cache, main_device is on GPU and uses a lot of VRAM"}), |
|
"num_blocks_to_cache": ("INT", {"default": 42, "min": 0, "max": 1024, "step": 1, "tooltip": "Number of transformer blocks to cache, 5b model has 42 blocks, tradeoff between speed and memory"}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("FASTERCACHEARGS",) |
|
RETURN_NAMES = ("fastercache", ) |
|
FUNCTION = "args" |
|
CATEGORY = "CogVideoWrapper" |
|
|
|
def args(self, start_step, hf_step, lf_step, cache_device, num_blocks_to_cache): |
|
device = mm.get_torch_device() |
|
offload_device = mm.unet_offload_device() |
|
if cache_device == "cuda:1": |
|
device = torch.device("cuda:1") |
|
fastercache = { |
|
"start_step" : start_step, |
|
"hf_step" : hf_step, |
|
"lf_step" : lf_step, |
|
"cache_device" : device if cache_device != "offload_device" else offload_device, |
|
"num_blocks_to_cache" : num_blocks_to_cache, |
|
} |
|
return (fastercache,) |
|
|
|
|
|
class CogVideoSampler: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"model": ("COGVIDEOMODEL",), |
|
"positive": ("CONDITIONING", ), |
|
"negative": ("CONDITIONING", ), |
|
"num_frames": ("INT", {"default": 49, "min": 1, "max": 1024, "step": 1}), |
|
"steps": ("INT", {"default": 50, "min": 1}), |
|
"cfg": ("FLOAT", {"default": 6.0, "min": 0.0, "max": 30.0, "step": 0.01}), |
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), |
|
"scheduler": (available_schedulers, |
|
{ |
|
"default": 'CogVideoXDDIM' |
|
}), |
|
}, |
|
"optional": { |
|
"samples": ("LATENT", {"tooltip": "init Latents to use for video2video process"} ), |
|
"image_cond_latents": ("LATENT",{"tooltip": "Latent to use for image2video conditioning"} ), |
|
"denoise_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
"context_options": ("COGCONTEXT", ), |
|
"controlnet": ("COGVIDECONTROLNET",), |
|
"tora_trajectory": ("TORAFEATURES", ), |
|
"fastercache": ("FASTERCACHEARGS", ), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("LATENT",) |
|
RETURN_NAMES = ("samples",) |
|
FUNCTION = "process" |
|
CATEGORY = "CogVideoWrapper" |
|
|
|
def process(self, model, positive, negative, steps, cfg, seed, scheduler, num_frames, samples=None, |
|
denoise_strength=1.0, image_cond_latents=None, context_options=None, controlnet=None, tora_trajectory=None, fastercache=None): |
|
mm.unload_all_models() |
|
mm.soft_empty_cache() |
|
|
|
model_name = model.get("model_name", "") |
|
supports_image_conds = True if ( |
|
"I2V" in model_name or |
|
"interpolation" in model_name.lower() or |
|
"fun" in model_name.lower() or |
|
"img2vid" in model_name.lower() |
|
) else False |
|
if "fun" in model_name.lower() and not ("pose" in model_name.lower() or "control" in model_name.lower()) and image_cond_latents is not None: |
|
assert image_cond_latents["mask"] is not None, "For fun inpaint models use CogVideoImageEncodeFunInP" |
|
fun_mask = image_cond_latents["mask"] |
|
else: |
|
fun_mask = None |
|
|
|
if image_cond_latents is not None: |
|
assert supports_image_conds, "Image condition latents only supported for I2V and Interpolation models" |
|
image_conds = image_cond_latents["samples"] |
|
image_cond_start_percent = image_cond_latents.get("start_percent", 0.0) |
|
image_cond_end_percent = image_cond_latents.get("end_percent", 1.0) |
|
if "1.5" in model_name or "1_5" in model_name: |
|
image_conds = image_conds / 0.7 |
|
else: |
|
if not "fun" in model_name.lower(): |
|
assert not supports_image_conds, "Image condition latents required for I2V models" |
|
image_conds = None |
|
|
|
if samples is not None: |
|
if len(samples["samples"].shape) == 5: |
|
B, T, C, H, W = samples["samples"].shape |
|
latents = samples["samples"] |
|
if len(samples["samples"].shape) == 4: |
|
B, C, H, W = samples["samples"].shape |
|
latents = None |
|
if image_cond_latents is not None: |
|
B, T, C, H, W = image_cond_latents["samples"].shape |
|
height = H * 8 |
|
width = W * 8 |
|
|
|
device = mm.get_torch_device() |
|
offload_device = mm.unet_offload_device() |
|
pipe = model["pipe"] |
|
dtype = model["dtype"] |
|
scheduler_config = model["scheduler_config"] |
|
|
|
if not model["cpu_offloading"] and model["manual_offloading"]: |
|
pipe.transformer.to(device) |
|
generator = torch.Generator(device=torch.device("cpu")).manual_seed(seed) |
|
|
|
if scheduler in scheduler_mapping: |
|
noise_scheduler = scheduler_mapping[scheduler].from_config(scheduler_config) |
|
pipe.scheduler = noise_scheduler |
|
else: |
|
raise ValueError(f"Unknown scheduler: {scheduler}") |
|
|
|
if tora_trajectory is not None: |
|
pipe.transformer.fuser_list = tora_trajectory["fuser_list"] |
|
|
|
if context_options is not None: |
|
context_frames = context_options["context_frames"] // 4 |
|
context_stride = context_options["context_stride"] // 4 |
|
context_overlap = context_options["context_overlap"] // 4 |
|
else: |
|
context_frames, context_stride, context_overlap = None, None, None |
|
|
|
if negative.shape[1] < positive.shape[1]: |
|
target_length = positive.shape[1] |
|
padding = torch.zeros((negative.shape[0], target_length - negative.shape[1], negative.shape[2]), device=negative.device) |
|
negative = torch.cat((negative, padding), dim=1) |
|
|
|
if fastercache is not None: |
|
pipe.transformer.use_fastercache = True |
|
pipe.transformer.fastercache_counter = 0 |
|
pipe.transformer.fastercache_start_step = fastercache["start_step"] |
|
pipe.transformer.fastercache_lf_step = fastercache["lf_step"] |
|
pipe.transformer.fastercache_hf_step = fastercache["hf_step"] |
|
pipe.transformer.fastercache_device = fastercache["cache_device"] |
|
pipe.transformer.fastercache_num_blocks_to_cache = fastercache["num_blocks_to_cache"] |
|
log.info(f"FasterCache enabled for {pipe.transformer.fastercache_num_blocks_to_cache} blocks out of {len(pipe.transformer.transformer_blocks)}") |
|
else: |
|
pipe.transformer.use_fastercache = False |
|
pipe.transformer.fastercache_counter = 0 |
|
|
|
if not isinstance(cfg, list): |
|
cfg = [cfg for _ in range(steps)] |
|
else: |
|
assert len(cfg) == steps, "Length of cfg list must match number of steps" |
|
try: |
|
torch.cuda.reset_peak_memory_stats(device) |
|
except: |
|
pass |
|
|
|
autocast_context = torch.autocast( |
|
mm.get_autocast_device(device), dtype=dtype |
|
) if any(q in model["quantization"] for q in ("e4m3fn", "GGUF")) else nullcontext() |
|
with autocast_context: |
|
latents = model["pipe"]( |
|
num_inference_steps=steps, |
|
height = height, |
|
width = width, |
|
num_frames = num_frames, |
|
guidance_scale=cfg, |
|
latents=latents if samples is not None else None, |
|
fun_mask = fun_mask, |
|
image_cond_latents=image_conds, |
|
denoise_strength=denoise_strength, |
|
prompt_embeds=positive.to(dtype).to(device), |
|
negative_prompt_embeds=negative.to(dtype).to(device), |
|
generator=generator, |
|
device=device, |
|
context_schedule=context_options["context_schedule"] if context_options is not None else None, |
|
context_frames=context_frames, |
|
context_stride= context_stride, |
|
context_overlap= context_overlap, |
|
freenoise=context_options["freenoise"] if context_options is not None else None, |
|
controlnet=controlnet, |
|
tora=tora_trajectory if tora_trajectory is not None else None, |
|
image_cond_start_percent=image_cond_start_percent if image_cond_latents is not None else 0.0, |
|
image_cond_end_percent=image_cond_end_percent if image_cond_latents is not None else 1.0, |
|
) |
|
if not model["cpu_offloading"] and model["manual_offloading"]: |
|
pipe.transformer.to(offload_device) |
|
|
|
if fastercache is not None: |
|
for block in pipe.transformer.transformer_blocks: |
|
if (hasattr, block, "cached_hidden_states") and block.cached_hidden_states is not None: |
|
block.cached_hidden_states = None |
|
block.cached_encoder_hidden_states = None |
|
|
|
print_memory(device) |
|
mm.soft_empty_cache() |
|
try: |
|
torch.cuda.reset_peak_memory_stats(device) |
|
except: |
|
pass |
|
|
|
additional_frames = getattr(pipe, "additional_frames", 0) |
|
return ({ |
|
"samples": latents, |
|
"additional_frames": additional_frames, |
|
},) |
|
|
|
class CogVideoControlNet: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"controlnet": ("COGVIDECONTROLNETMODEL",), |
|
"images": ("IMAGE", ), |
|
"control_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), |
|
"control_start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
"control_end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("COGVIDECONTROLNET",) |
|
RETURN_NAMES = ("cogvideo_controlnet",) |
|
FUNCTION = "encode" |
|
CATEGORY = "CogVideoWrapper" |
|
|
|
def encode(self, controlnet, images, control_strength, control_start_percent, control_end_percent): |
|
control_frames = images.permute(0, 3, 1, 2).unsqueeze(0) * 2 - 1 |
|
controlnet = { |
|
"control_model": controlnet, |
|
"control_frames": control_frames, |
|
"control_weights": control_strength, |
|
"control_start": control_start_percent, |
|
"control_end": control_end_percent, |
|
} |
|
return (controlnet,) |
|
|
|
|
|
class CogVideoDecode: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"vae": ("VAE",), |
|
"samples": ("LATENT",), |
|
"enable_vae_tiling": ("BOOLEAN", {"default": True, "tooltip": "Drastically reduces memory use but may introduce seams"}), |
|
"tile_sample_min_height": ("INT", {"default": 240, "min": 16, "max": 2048, "step": 8, "tooltip": "Minimum tile height, default is half the height"}), |
|
"tile_sample_min_width": ("INT", {"default": 360, "min": 16, "max": 2048, "step": 8, "tooltip": "Minimum tile width, default is half the width"}), |
|
"tile_overlap_factor_height": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"tile_overlap_factor_width": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"auto_tile_size": ("BOOLEAN", {"default": True, "tooltip": "Auto size based on height and width, default is half the size"}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("images",) |
|
FUNCTION = "decode" |
|
CATEGORY = "CogVideoWrapper" |
|
|
|
def decode(self, vae, samples, enable_vae_tiling, tile_sample_min_height, tile_sample_min_width, tile_overlap_factor_height, tile_overlap_factor_width, |
|
auto_tile_size=True, pipeline=None): |
|
device = mm.get_torch_device() |
|
offload_device = mm.unet_offload_device() |
|
latents = samples["samples"] |
|
|
|
additional_frames = samples.get("additional_frames", 0) |
|
|
|
try: |
|
vae.enable_slicing() |
|
except: |
|
pass |
|
|
|
vae.to(device) |
|
if enable_vae_tiling: |
|
if auto_tile_size: |
|
vae.enable_tiling() |
|
else: |
|
vae.enable_tiling( |
|
tile_sample_min_height=tile_sample_min_height, |
|
tile_sample_min_width=tile_sample_min_width, |
|
tile_overlap_factor_height=tile_overlap_factor_height, |
|
tile_overlap_factor_width=tile_overlap_factor_width, |
|
) |
|
else: |
|
vae.disable_tiling() |
|
latents = latents.to(vae.dtype).to(device) |
|
latents = latents.permute(0, 2, 1, 3, 4) |
|
latents = 1 / vae.config.scaling_factor * latents |
|
|
|
try: |
|
vae._clear_fake_context_parallel_cache() |
|
except: |
|
pass |
|
try: |
|
frames = vae.decode(latents[:, :, additional_frames:]).sample |
|
except: |
|
mm.soft_empty_cache() |
|
log.warning("Failed to decode, retrying with tiling") |
|
vae.enable_tiling() |
|
frames = vae.decode(latents[:, :, additional_frames:]).sample |
|
|
|
vae.disable_tiling() |
|
vae.to(offload_device) |
|
mm.soft_empty_cache() |
|
|
|
video_processor = VideoProcessor(vae_scale_factor=8) |
|
video_processor.config.do_resize = False |
|
|
|
video = video_processor.postprocess_video(video=frames, output_type="pt") |
|
video = video[0].permute(0, 2, 3, 1).cpu().float() |
|
|
|
return (video,) |
|
|
|
class CogVideoXFunResizeToClosestBucket: |
|
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"images": ("IMAGE", ), |
|
"base_resolution": ("INT", {"min": 64, "max": 1280, "step": 64, "default": 512, "tooltip": "Base resolution, closest training data bucket resolution is chosen based on the selection."}), |
|
"upscale_method": (s.upscale_methods, {"default": "lanczos", "tooltip": "Upscale method to use"}), |
|
"crop": (["disabled","center"],), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "INT", "INT") |
|
RETURN_NAMES = ("images", "width", "height") |
|
FUNCTION = "resize" |
|
CATEGORY = "CogVideoWrapper" |
|
|
|
def resize(self, images, base_resolution, upscale_method, crop): |
|
from comfy.utils import common_upscale |
|
from .cogvideox_fun.utils import ASPECT_RATIO_512, get_closest_ratio |
|
|
|
B, H, W, C = images.shape |
|
|
|
aspect_ratio_sample_size = {key : [x / 512 * base_resolution for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()} |
|
|
|
closest_size, closest_ratio = get_closest_ratio(H, W, ratios=aspect_ratio_sample_size) |
|
height, width = [int(x / 16) * 16 for x in closest_size] |
|
log.info(f"Closest bucket size: {width}x{height}") |
|
|
|
resized_images = images.clone().movedim(-1,1) |
|
resized_images = common_upscale(resized_images, width, height, upscale_method, crop) |
|
resized_images = resized_images.movedim(1,-1) |
|
|
|
return (resized_images, width, height) |
|
|
|
class CogVideoLatentPreview: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"samples": ("LATENT",), |
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), |
|
"min_val": ("FLOAT", {"default": -0.15, "min": -1.0, "max": 0.0, "step": 0.001}), |
|
"max_val": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.001}), |
|
"r_bias": ("FLOAT", {"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001}), |
|
"g_bias": ("FLOAT", {"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001}), |
|
"b_bias": ("FLOAT", {"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "STRING", ) |
|
RETURN_NAMES = ("images", "latent_rgb_factors",) |
|
FUNCTION = "sample" |
|
CATEGORY = "PyramidFlowWrapper" |
|
|
|
def sample(self, samples, seed, min_val, max_val, r_bias, g_bias, b_bias): |
|
mm.soft_empty_cache() |
|
|
|
latents = samples["samples"].clone() |
|
print("in sample", latents.shape) |
|
latents = latents.permute(0, 2, 1, 3, 4) |
|
|
|
|
|
latent_rgb_factors =[[0.11945946736445662, 0.09919175788574555, -0.004832707433877734], [-0.0011977028264356232, 0.05496505130267682, 0.021321622433638193], [-0.014088548986590666, -0.008701477861945644, -0.020991313281459367], [0.03063921972519621, 0.12186477097625073, 0.0139593690235148], [0.0927403067854673, 0.030293187650929136, 0.05083134241694003], [0.0379112441305742, 0.04935199882777209, 0.058562766246777774], [0.017749911959153715, 0.008839453404921545, 0.036005638019226294], [0.10610119248526109, 0.02339855688237826, 0.057154257614084596], [0.1273639464837117, -0.010959856130713416, 0.043268631260428896], [-0.01873510946881321, 0.08220930648486932, 0.10613256772247093], [0.008429116376722327, 0.07623856561000408, 0.09295712117576727], [0.12938137079617007, 0.12360403483892413, 0.04478930933220116], [0.04565908794779364, 0.041064156741596365, -0.017695041535528512], [0.00019003240570281826, -0.013965147883381978, 0.05329669529635849], [0.08082391586738358, 0.11548306825496074, -0.021464170006615893], [-0.01517932393230994, -0.0057985555313003236, 0.07216646476618871]] |
|
import random |
|
random.seed(seed) |
|
latent_rgb_factors = [[random.uniform(min_val, max_val) for _ in range(3)] for _ in range(16)] |
|
out_factors = latent_rgb_factors |
|
print(latent_rgb_factors) |
|
|
|
latent_rgb_factors_bias = [0.085, 0.137, 0.158] |
|
|
|
|
|
latent_rgb_factors = torch.tensor(latent_rgb_factors, device=latents.device, dtype=latents.dtype).transpose(0, 1) |
|
latent_rgb_factors_bias = torch.tensor(latent_rgb_factors_bias, device=latents.device, dtype=latents.dtype) |
|
|
|
print("latent_rgb_factors", latent_rgb_factors.shape) |
|
|
|
latent_images = [] |
|
for t in range(latents.shape[2]): |
|
latent = latents[:, :, t, :, :] |
|
latent = latent[0].permute(1, 2, 0) |
|
latent_image = torch.nn.functional.linear( |
|
latent, |
|
latent_rgb_factors, |
|
bias=latent_rgb_factors_bias |
|
) |
|
latent_images.append(latent_image) |
|
latent_images = torch.stack(latent_images, dim=0) |
|
print("latent_images", latent_images.shape) |
|
latent_images_min = latent_images.min() |
|
latent_images_max = latent_images.max() |
|
latent_images = (latent_images - latent_images_min) / (latent_images_max - latent_images_min) |
|
|
|
return (latent_images.float().cpu(), out_factors) |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"CogVideoSampler": CogVideoSampler, |
|
"CogVideoDecode": CogVideoDecode, |
|
"CogVideoTextEncode": CogVideoTextEncode, |
|
"CogVideoImageEncode": CogVideoImageEncode, |
|
"CogVideoTextEncodeCombine": CogVideoTextEncodeCombine, |
|
"CogVideoTransformerEdit": CogVideoTransformerEdit, |
|
"CogVideoContextOptions": CogVideoContextOptions, |
|
"CogVideoControlNet": CogVideoControlNet, |
|
"ToraEncodeTrajectory": ToraEncodeTrajectory, |
|
"ToraEncodeOpticalFlow": ToraEncodeOpticalFlow, |
|
"CogVideoXFasterCache": CogVideoXFasterCache, |
|
"CogVideoXFunResizeToClosestBucket": CogVideoXFunResizeToClosestBucket, |
|
"CogVideoLatentPreview": CogVideoLatentPreview, |
|
"CogVideoXTorchCompileSettings": CogVideoXTorchCompileSettings, |
|
"CogVideoImageEncodeFunInP": CogVideoImageEncodeFunInP, |
|
} |
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"CogVideoSampler": "CogVideo Sampler", |
|
"CogVideoDecode": "CogVideo Decode", |
|
"CogVideoTextEncode": "CogVideo TextEncode", |
|
"CogVideoImageEncode": "CogVideo ImageEncode", |
|
"CogVideoTextEncodeCombine": "CogVideo TextEncode Combine", |
|
"CogVideoTransformerEdit": "CogVideo TransformerEdit", |
|
"CogVideoContextOptions": "CogVideo Context Options", |
|
"ToraEncodeTrajectory": "Tora Encode Trajectory", |
|
"ToraEncodeOpticalFlow": "Tora Encode OpticalFlow", |
|
"CogVideoXFasterCache": "CogVideoX FasterCache", |
|
"CogVideoXFunResizeToClosestBucket": "CogVideoXFun ResizeToClosestBucket", |
|
"CogVideoLatentPreview": "CogVideo LatentPreview", |
|
"CogVideoXTorchCompileSettings": "CogVideo TorchCompileSettings", |
|
"CogVideoImageEncodeFunInP": "CogVideo ImageEncode FunInP", |
|
} |
|
|