jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
import os
import torch
import json
from einops import rearrange
from contextlib import nullcontext
from .utils import log, check_diffusers_version, print_memory
check_diffusers_version()
from diffusers.schedulers import (
CogVideoXDDIMScheduler,
CogVideoXDPMScheduler,
DDIMScheduler,
PNDMScheduler,
DPMSolverMultistepScheduler,
EulerDiscreteScheduler,
EulerAncestralDiscreteScheduler,
UniPCMultistepScheduler,
HeunDiscreteScheduler,
SASolverScheduler,
DEISMultistepScheduler,
LCMScheduler
)
scheduler_mapping = {
"DPM++": DPMSolverMultistepScheduler,
"Euler": EulerDiscreteScheduler,
"Euler A": EulerAncestralDiscreteScheduler,
"PNDM": PNDMScheduler,
"DDIM": DDIMScheduler,
"CogVideoXDDIM": CogVideoXDDIMScheduler,
"CogVideoXDPMScheduler": CogVideoXDPMScheduler,
"SASolverScheduler": SASolverScheduler,
"UniPCMultistepScheduler": UniPCMultistepScheduler,
"HeunDiscreteScheduler": HeunDiscreteScheduler,
"DEISMultistepScheduler": DEISMultistepScheduler,
"LCMScheduler": LCMScheduler
}
available_schedulers = list(scheduler_mapping.keys())
from diffusers.video_processor import VideoProcessor
import folder_paths
import comfy.model_management as mm
script_directory = os.path.dirname(os.path.abspath(__file__))
if not "CogVideo" in folder_paths.folder_names_and_paths:
folder_paths.add_model_folder_path("CogVideo", os.path.join(folder_paths.models_dir, "CogVideo"))
if not "cogvideox_loras" in folder_paths.folder_names_and_paths:
folder_paths.add_model_folder_path("cogvideox_loras", os.path.join(folder_paths.models_dir, "CogVideo", "loras"))
class CogVideoContextOptions:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"context_schedule": (["uniform_standard", "uniform_looped", "static_standard"],),
"context_frames": ("INT", {"default": 48, "min": 2, "max": 100, "step": 1, "tooltip": "Number of pixel frames in the context, NOTE: the latent space has 4 frames in 1"} ),
"context_stride": ("INT", {"default": 4, "min": 4, "max": 100, "step": 1, "tooltip": "Context stride as pixel frames, NOTE: the latent space has 4 frames in 1"} ),
"context_overlap": ("INT", {"default": 4, "min": 4, "max": 100, "step": 1, "tooltip": "Context overlap as pixel frames, NOTE: the latent space has 4 frames in 1"} ),
"freenoise": ("BOOLEAN", {"default": True, "tooltip": "Shuffle the noise"}),
}
}
RETURN_TYPES = ("COGCONTEXT", )
RETURN_NAMES = ("context_options",)
FUNCTION = "process"
CATEGORY = "CogVideoWrapper"
def process(self, context_schedule, context_frames, context_stride, context_overlap, freenoise):
context_options = {
"context_schedule":context_schedule,
"context_frames":context_frames,
"context_stride":context_stride,
"context_overlap":context_overlap,
"freenoise":freenoise
}
return (context_options,)
class CogVideoTransformerEdit:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"remove_blocks": ("STRING", {"default": "15, 25, 37", "multiline": True, "tooltip": "Comma separated list of block indices to remove, 5b blocks: 0-41, 2b model blocks 0-29"} ),
}
}
RETURN_TYPES = ("TRANSFORMERBLOCKS",)
RETURN_NAMES = ("block_list", )
FUNCTION = "process"
CATEGORY = "CogVideoWrapper"
DESCRIPTION = "EXPERIMENTAL:Remove specific transformer blocks from the model"
def process(self, remove_blocks):
blocks_to_remove = [int(x.strip()) for x in remove_blocks.split(',')]
log.info(f"Blocks selected for removal: {blocks_to_remove}")
return (blocks_to_remove,)
class CogVideoXTorchCompileSettings:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"backend": (["inductor","cudagraphs"], {"default": "inductor"}),
"fullgraph": ("BOOLEAN", {"default": False, "tooltip": "Enable full graph mode"}),
"mode": (["default", "max-autotune", "max-autotune-no-cudagraphs", "reduce-overhead"], {"default": "default"}),
"dynamic": ("BOOLEAN", {"default": False, "tooltip": "Enable dynamic mode"}),
"dynamo_cache_size_limit": ("INT", {"default": 64, "min": 0, "max": 1024, "step": 1, "tooltip": "torch._dynamo.config.cache_size_limit"}),
},
}
RETURN_TYPES = ("COMPILEARGS",)
RETURN_NAMES = ("torch_compile_args",)
FUNCTION = "loadmodel"
CATEGORY = "MochiWrapper"
DESCRIPTION = "torch.compile settings, when connected to the model loader, torch.compile of the selected layers is attempted. Requires Triton and torch 2.5.0 is recommended"
def loadmodel(self, backend, fullgraph, mode, dynamic, dynamo_cache_size_limit):
compile_args = {
"backend": backend,
"fullgraph": fullgraph,
"mode": mode,
"dynamic": dynamic,
"dynamo_cache_size_limit": dynamo_cache_size_limit,
}
return (compile_args, )
#region TextEncode
class CogVideoTextEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"clip": ("CLIP",),
"prompt": ("STRING", {"default": "", "multiline": True} ),
},
"optional": {
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"force_offload": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("CONDITIONING", "CLIP",)
RETURN_NAMES = ("conditioning", "clip")
FUNCTION = "process"
CATEGORY = "CogVideoWrapper"
def process(self, clip, prompt, strength=1.0, force_offload=True):
max_tokens = 226
load_device = mm.text_encoder_device()
offload_device = mm.text_encoder_offload_device()
clip.tokenizer.t5xxl.pad_to_max_length = True
clip.tokenizer.t5xxl.max_length = max_tokens
clip.cond_stage_model.to(load_device)
tokens = clip.tokenize(prompt, return_word_ids=True)
embeds = clip.encode_from_tokens(tokens, return_pooled=False, return_dict=False)
if embeds.shape[1] > max_tokens:
raise ValueError(f"Prompt is too long, max tokens supported is {max_tokens} or less, got {embeds.shape[1]}")
embeds *= strength
if force_offload:
clip.cond_stage_model.to(offload_device)
return (embeds, clip, )
class CogVideoTextEncodeCombine:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"conditioning_1": ("CONDITIONING",),
"conditioning_2": ("CONDITIONING",),
"combination_mode": (["average", "weighted_average", "concatenate"], {"default": "weighted_average"}),
"weighted_average_ratio": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 10.0, "step": 0.01}),
},
}
RETURN_TYPES = ("CONDITIONING",)
RETURN_NAMES = ("conditioning",)
FUNCTION = "process"
CATEGORY = "CogVideoWrapper"
def process(self, conditioning_1, conditioning_2, combination_mode, weighted_average_ratio):
if conditioning_1.shape != conditioning_2.shape:
raise ValueError("conditioning_1 and conditioning_2 must have the same shape")
if combination_mode == "average":
embeds = (conditioning_1 + conditioning_2) / 2
elif combination_mode == "weighted_average":
embeds = conditioning_1 * (1 - weighted_average_ratio) + conditioning_2 * weighted_average_ratio
elif combination_mode == "concatenate":
embeds = torch.cat((conditioning_1, conditioning_2), dim=-2)
else:
raise ValueError("Invalid combination mode")
return (embeds, )
#region ImageEncode
def add_noise_to_reference_video(image, ratio=None):
if ratio is None:
sigma = torch.normal(mean=-3.0, std=0.5, size=(image.shape[0],)).to(image.device)
sigma = torch.exp(sigma).to(image.dtype)
else:
sigma = torch.ones((image.shape[0],)).to(image.device, image.dtype) * ratio
image_noise = torch.randn_like(image) * sigma[:, None, None, None, None]
image_noise = torch.where(image==-1, torch.zeros_like(image), image_noise)
image = image + image_noise
return image
class CogVideoImageEncode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"vae": ("VAE",),
"start_image": ("IMAGE", ),
},
"optional": {
"end_image": ("IMAGE", ),
"enable_tiling": ("BOOLEAN", {"default": False, "tooltip": "Enable tiling for the VAE to reduce memory usage"}),
"noise_aug_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "Augment image with noise"}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = ("LATENT",)
RETURN_NAMES = ("samples",)
FUNCTION = "encode"
CATEGORY = "CogVideoWrapper"
def encode(self, vae, start_image, end_image=None, enable_tiling=False, noise_aug_strength=0.0, strength=1.0, start_percent=0.0, end_percent=1.0):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
generator = torch.Generator(device=device).manual_seed(0)
try:
vae.enable_slicing()
except:
pass
vae_scaling_factor = vae.config.scaling_factor
if enable_tiling:
from .mz_enable_vae_encode_tiling import enable_vae_encode_tiling
enable_vae_encode_tiling(vae)
vae.to(device)
try:
vae._clear_fake_context_parallel_cache()
except:
pass
latents_list = []
start_image = (start_image * 2.0 - 1.0).to(vae.dtype).to(device).unsqueeze(0).permute(0, 4, 1, 2, 3) # B, C, T, H, W
if noise_aug_strength > 0:
start_image = add_noise_to_reference_video(start_image, ratio=noise_aug_strength)
start_latents = vae.encode(start_image).latent_dist.sample(generator)
start_latents = start_latents.permute(0, 2, 1, 3, 4) # B, T, C, H, W
if end_image is not None:
end_image = (end_image * 2.0 - 1.0).to(vae.dtype).to(device).unsqueeze(0).permute(0, 4, 1, 2, 3)
if noise_aug_strength > 0:
end_image = add_noise_to_reference_video(end_image, ratio=noise_aug_strength)
end_latents = vae.encode(end_image).latent_dist.sample(generator)
end_latents = end_latents.permute(0, 2, 1, 3, 4) # B, T, C, H, W
latents_list = [start_latents, end_latents]
final_latents = torch.cat(latents_list, dim=1)
else:
final_latents = start_latents
final_latents = final_latents * vae_scaling_factor * strength
log.info(f"Encoded latents shape: {final_latents.shape}")
vae.to(offload_device)
return ({
"samples": final_latents,
"start_percent": start_percent,
"end_percent": end_percent
}, )
class CogVideoImageEncodeFunInP:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"vae": ("VAE",),
"start_image": ("IMAGE", ),
"num_frames": ("INT", {"default": 49, "min": 2, "max": 1024, "step": 1}),
},
"optional": {
"end_image": ("IMAGE", ),
"enable_tiling": ("BOOLEAN", {"default": False, "tooltip": "Enable tiling for the VAE to reduce memory usage"}),
"noise_aug_strength": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001, "tooltip": "Augment image with noise"}),
},
}
RETURN_TYPES = ("LATENT",)
RETURN_NAMES = ("image_cond_latents",)
FUNCTION = "encode"
CATEGORY = "CogVideoWrapper"
def encode(self, vae, start_image, num_frames, end_image=None, enable_tiling=False, noise_aug_strength=0.0):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
generator = torch.Generator(device=device).manual_seed(0)
try:
vae.enable_slicing()
except:
pass
vae_scaling_factor = vae.config.scaling_factor
if enable_tiling:
from .mz_enable_vae_encode_tiling import enable_vae_encode_tiling
enable_vae_encode_tiling(vae)
vae.to(device)
try:
vae._clear_fake_context_parallel_cache()
except:
pass
if end_image is not None:
# Create a tensor of zeros for padding
padding = torch.zeros((num_frames - 2, start_image.shape[1], start_image.shape[2], 3), device=end_image.device, dtype=end_image.dtype) * -1
# Concatenate start_image, padding, and end_image
input_image = torch.cat([start_image, padding, end_image], dim=0)
else:
# Create a tensor of zeros for padding
padding = torch.zeros((num_frames - 1, start_image.shape[1], start_image.shape[2], 3), device=start_image.device, dtype=start_image.dtype) * -1
# Concatenate start_image and padding
input_image = torch.cat([start_image, padding], dim=0)
input_image = input_image * 2.0 - 1.0
input_image = input_image.to(vae.dtype).to(device)
input_image = input_image.unsqueeze(0).permute(0, 4, 1, 2, 3) # B, C, T, H, W
B, C, T, H, W = input_image.shape
if noise_aug_strength > 0:
input_image = add_noise_to_reference_video(input_image, ratio=noise_aug_strength)
bs = 1
new_mask_pixel_values = []
for i in range(0, input_image.shape[0], bs):
mask_pixel_values_bs = input_image[i : i + bs]
mask_pixel_values_bs = vae.encode(mask_pixel_values_bs)[0]
mask_pixel_values_bs = mask_pixel_values_bs.mode()
new_mask_pixel_values.append(mask_pixel_values_bs)
masked_image_latents = torch.cat(new_mask_pixel_values, dim = 0)
masked_image_latents = masked_image_latents.permute(0, 2, 1, 3, 4) # B, T, C, H, W
mask = torch.zeros_like(masked_image_latents[:, :, :1, :, :])
if end_image is not None:
mask[:, -1, :, :, :] = 0
mask[:, 0, :, :, :] = vae_scaling_factor
final_latents = masked_image_latents * vae_scaling_factor
log.info(f"Encoded latents shape: {final_latents.shape}")
vae.to(offload_device)
return ({
"samples": final_latents,
"mask": mask
},)
#region Tora
from .tora.traj_utils import process_traj, scale_traj_list_to_256
from torchvision.utils import flow_to_image
class ToraEncodeTrajectory:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"tora_model": ("TORAMODEL",),
"vae": ("VAE",),
"coordinates": ("STRING", {"forceInput": True}),
"width": ("INT", {"default": 720, "min": 128, "max": 2048, "step": 8}),
"height": ("INT", {"default": 480, "min": 128, "max": 2048, "step": 8}),
"num_frames": ("INT", {"default": 49, "min": 2, "max": 1024, "step": 1}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
"optional": {
"enable_tiling": ("BOOLEAN", {"default": True}),
}
}
RETURN_TYPES = ("TORAFEATURES", "IMAGE", )
RETURN_NAMES = ("tora_trajectory", "video_flow_images", )
FUNCTION = "encode"
CATEGORY = "CogVideoWrapper"
def encode(self, vae, width, height, num_frames, coordinates, strength, start_percent, end_percent, tora_model, enable_tiling=False):
check_diffusers_version()
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
generator = torch.Generator(device=device).manual_seed(0)
try:
vae.enable_slicing()
except:
pass
try:
vae._clear_fake_context_parallel_cache()
except:
pass
if enable_tiling:
from .mz_enable_vae_encode_tiling import enable_vae_encode_tiling
enable_vae_encode_tiling(vae)
if len(coordinates) < 10:
coords_list = []
for coords in coordinates:
coords = json.loads(coords.replace("'", '"'))
coords = [(coord['x'], coord['y']) for coord in coords]
traj_list_range_256 = scale_traj_list_to_256(coords, width, height)
coords_list.append(traj_list_range_256)
else:
coords = json.loads(coordinates.replace("'", '"'))
coords = [(coord['x'], coord['y']) for coord in coords]
coords_list = scale_traj_list_to_256(coords, width, height)
video_flow, points = process_traj(coords_list, num_frames, (height,width), device=device)
video_flow = rearrange(video_flow, "T H W C -> T C H W")
video_flow = flow_to_image(video_flow).unsqueeze_(0).to(device) # [1 T C H W]
video_flow = (rearrange(video_flow / 255.0 * 2 - 1, "B T C H W -> B C T H W").contiguous().to(vae.dtype))
video_flow_image = rearrange(video_flow, "B C T H W -> (B T) H W C")
#print(video_flow_image.shape)
mm.soft_empty_cache()
# VAE encode
vae.to(device)
video_flow = vae.encode(video_flow).latent_dist.sample(generator) * vae.config.scaling_factor
log.info(f"video_flow shape after encoding: {video_flow.shape}") #torch.Size([1, 16, 4, 80, 80])
vae.to(offload_device)
tora_model["traj_extractor"].to(device)
#print("video_flow shape before traj_extractor: ", video_flow.shape) #torch.Size([1, 16, 4, 80, 80])
video_flow_features = tora_model["traj_extractor"](video_flow.to(torch.float32))
tora_model["traj_extractor"].to(offload_device)
video_flow_features = torch.stack(video_flow_features)
#print("video_flow_features after traj_extractor: ", video_flow_features.shape) #torch.Size([42, 4, 128, 40, 40])
video_flow_features = video_flow_features * strength
tora = {
"video_flow_features" : video_flow_features,
"start_percent" : start_percent,
"end_percent" : end_percent,
"traj_extractor" : tora_model["traj_extractor"],
"fuser_list" : tora_model["fuser_list"],
}
return (tora, video_flow_image.cpu().float())
class ToraEncodeOpticalFlow:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"vae": ("VAE",),
"tora_model": ("TORAMODEL",),
"optical_flow": ("IMAGE", ),
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = ("TORAFEATURES",)
RETURN_NAMES = ("tora_trajectory",)
FUNCTION = "encode"
CATEGORY = "CogVideoWrapper"
def encode(self, vae, optical_flow, strength, tora_model, start_percent, end_percent):
check_diffusers_version()
B, H, W, C = optical_flow.shape
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
generator = torch.Generator(device=device).manual_seed(0)
try:
vae.enable_slicing()
except:
pass
try:
vae._clear_fake_context_parallel_cache()
except:
pass
video_flow = optical_flow * 2 - 1
video_flow = rearrange(video_flow, "(B T) H W C -> B C T H W", T=B, B=1)
print(video_flow.shape)
mm.soft_empty_cache()
# VAE encode
vae.to(device)
video_flow = video_flow.to(vae.dtype).to(vae.device)
video_flow = vae.encode(video_flow).latent_dist.sample(generator) * vae.config.scaling_factor
vae.to(offload_device)
video_flow_features = tora_model["traj_extractor"](video_flow.to(torch.float32))
video_flow_features = torch.stack(video_flow_features)
video_flow_features = video_flow_features * strength
log.info(f"video_flow shape: {video_flow.shape}")
tora = {
"video_flow_features" : video_flow_features,
"start_percent" : start_percent,
"end_percent" : end_percent,
"traj_extractor" : tora_model["traj_extractor"],
"fuser_list" : tora_model["fuser_list"],
}
return (tora, )
#region FasterCache
class CogVideoXFasterCache:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"start_step": ("INT", {"default": 15, "min": 0, "max": 1024, "step": 1}),
"hf_step": ("INT", {"default": 30, "min": 0, "max": 1024, "step": 1}),
"lf_step": ("INT", {"default": 40, "min": 0, "max": 1024, "step": 1}),
"cache_device": (["main_device", "offload_device", "cuda:1"], {"default": "main_device", "tooltip": "The device to use for the cache, main_device is on GPU and uses a lot of VRAM"}),
"num_blocks_to_cache": ("INT", {"default": 42, "min": 0, "max": 1024, "step": 1, "tooltip": "Number of transformer blocks to cache, 5b model has 42 blocks, tradeoff between speed and memory"}),
},
}
RETURN_TYPES = ("FASTERCACHEARGS",)
RETURN_NAMES = ("fastercache", )
FUNCTION = "args"
CATEGORY = "CogVideoWrapper"
def args(self, start_step, hf_step, lf_step, cache_device, num_blocks_to_cache):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
if cache_device == "cuda:1":
device = torch.device("cuda:1")
fastercache = {
"start_step" : start_step,
"hf_step" : hf_step,
"lf_step" : lf_step,
"cache_device" : device if cache_device != "offload_device" else offload_device,
"num_blocks_to_cache" : num_blocks_to_cache,
}
return (fastercache,)
#region Sampler
class CogVideoSampler:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"model": ("COGVIDEOMODEL",),
"positive": ("CONDITIONING", ),
"negative": ("CONDITIONING", ),
"num_frames": ("INT", {"default": 49, "min": 1, "max": 1024, "step": 1}),
"steps": ("INT", {"default": 50, "min": 1}),
"cfg": ("FLOAT", {"default": 6.0, "min": 0.0, "max": 30.0, "step": 0.01}),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"scheduler": (available_schedulers,
{
"default": 'CogVideoXDDIM'
}),
},
"optional": {
"samples": ("LATENT", {"tooltip": "init Latents to use for video2video process"} ),
"image_cond_latents": ("LATENT",{"tooltip": "Latent to use for image2video conditioning"} ),
"denoise_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"context_options": ("COGCONTEXT", ),
"controlnet": ("COGVIDECONTROLNET",),
"tora_trajectory": ("TORAFEATURES", ),
"fastercache": ("FASTERCACHEARGS", ),
}
}
RETURN_TYPES = ("LATENT",)
RETURN_NAMES = ("samples",)
FUNCTION = "process"
CATEGORY = "CogVideoWrapper"
def process(self, model, positive, negative, steps, cfg, seed, scheduler, num_frames, samples=None,
denoise_strength=1.0, image_cond_latents=None, context_options=None, controlnet=None, tora_trajectory=None, fastercache=None):
mm.unload_all_models()
mm.soft_empty_cache()
model_name = model.get("model_name", "")
supports_image_conds = True if (
"I2V" in model_name or
"interpolation" in model_name.lower() or
"fun" in model_name.lower() or
"img2vid" in model_name.lower()
) else False
if "fun" in model_name.lower() and not ("pose" in model_name.lower() or "control" in model_name.lower()) and image_cond_latents is not None:
assert image_cond_latents["mask"] is not None, "For fun inpaint models use CogVideoImageEncodeFunInP"
fun_mask = image_cond_latents["mask"]
else:
fun_mask = None
if image_cond_latents is not None:
assert supports_image_conds, "Image condition latents only supported for I2V and Interpolation models"
image_conds = image_cond_latents["samples"]
image_cond_start_percent = image_cond_latents.get("start_percent", 0.0)
image_cond_end_percent = image_cond_latents.get("end_percent", 1.0)
if "1.5" in model_name or "1_5" in model_name:
image_conds = image_conds / 0.7 # needed for 1.5 models
else:
if not "fun" in model_name.lower():
assert not supports_image_conds, "Image condition latents required for I2V models"
image_conds = None
if samples is not None:
if len(samples["samples"].shape) == 5:
B, T, C, H, W = samples["samples"].shape
latents = samples["samples"]
if len(samples["samples"].shape) == 4:
B, C, H, W = samples["samples"].shape
latents = None
if image_cond_latents is not None:
B, T, C, H, W = image_cond_latents["samples"].shape
height = H * 8
width = W * 8
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
pipe = model["pipe"]
dtype = model["dtype"]
scheduler_config = model["scheduler_config"]
if not model["cpu_offloading"] and model["manual_offloading"]:
pipe.transformer.to(device)
generator = torch.Generator(device=torch.device("cpu")).manual_seed(seed)
if scheduler in scheduler_mapping:
noise_scheduler = scheduler_mapping[scheduler].from_config(scheduler_config)
pipe.scheduler = noise_scheduler
else:
raise ValueError(f"Unknown scheduler: {scheduler}")
if tora_trajectory is not None:
pipe.transformer.fuser_list = tora_trajectory["fuser_list"]
if context_options is not None:
context_frames = context_options["context_frames"] // 4
context_stride = context_options["context_stride"] // 4
context_overlap = context_options["context_overlap"] // 4
else:
context_frames, context_stride, context_overlap = None, None, None
if negative.shape[1] < positive.shape[1]:
target_length = positive.shape[1]
padding = torch.zeros((negative.shape[0], target_length - negative.shape[1], negative.shape[2]), device=negative.device)
negative = torch.cat((negative, padding), dim=1)
if fastercache is not None:
pipe.transformer.use_fastercache = True
pipe.transformer.fastercache_counter = 0
pipe.transformer.fastercache_start_step = fastercache["start_step"]
pipe.transformer.fastercache_lf_step = fastercache["lf_step"]
pipe.transformer.fastercache_hf_step = fastercache["hf_step"]
pipe.transformer.fastercache_device = fastercache["cache_device"]
pipe.transformer.fastercache_num_blocks_to_cache = fastercache["num_blocks_to_cache"]
log.info(f"FasterCache enabled for {pipe.transformer.fastercache_num_blocks_to_cache} blocks out of {len(pipe.transformer.transformer_blocks)}")
else:
pipe.transformer.use_fastercache = False
pipe.transformer.fastercache_counter = 0
if not isinstance(cfg, list):
cfg = [cfg for _ in range(steps)]
else:
assert len(cfg) == steps, "Length of cfg list must match number of steps"
try:
torch.cuda.reset_peak_memory_stats(device)
except:
pass
autocast_context = torch.autocast(
mm.get_autocast_device(device), dtype=dtype
) if any(q in model["quantization"] for q in ("e4m3fn", "GGUF")) else nullcontext()
with autocast_context:
latents = model["pipe"](
num_inference_steps=steps,
height = height,
width = width,
num_frames = num_frames,
guidance_scale=cfg,
latents=latents if samples is not None else None,
fun_mask = fun_mask,
image_cond_latents=image_conds,
denoise_strength=denoise_strength,
prompt_embeds=positive.to(dtype).to(device),
negative_prompt_embeds=negative.to(dtype).to(device),
generator=generator,
device=device,
context_schedule=context_options["context_schedule"] if context_options is not None else None,
context_frames=context_frames,
context_stride= context_stride,
context_overlap= context_overlap,
freenoise=context_options["freenoise"] if context_options is not None else None,
controlnet=controlnet,
tora=tora_trajectory if tora_trajectory is not None else None,
image_cond_start_percent=image_cond_start_percent if image_cond_latents is not None else 0.0,
image_cond_end_percent=image_cond_end_percent if image_cond_latents is not None else 1.0,
)
if not model["cpu_offloading"] and model["manual_offloading"]:
pipe.transformer.to(offload_device)
if fastercache is not None:
for block in pipe.transformer.transformer_blocks:
if (hasattr, block, "cached_hidden_states") and block.cached_hidden_states is not None:
block.cached_hidden_states = None
block.cached_encoder_hidden_states = None
print_memory(device)
mm.soft_empty_cache()
try:
torch.cuda.reset_peak_memory_stats(device)
except:
pass
additional_frames = getattr(pipe, "additional_frames", 0)
return ({
"samples": latents,
"additional_frames": additional_frames,
},)
class CogVideoControlNet:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"controlnet": ("COGVIDECONTROLNETMODEL",),
"images": ("IMAGE", ),
"control_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
"control_start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
"control_end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = ("COGVIDECONTROLNET",)
RETURN_NAMES = ("cogvideo_controlnet",)
FUNCTION = "encode"
CATEGORY = "CogVideoWrapper"
def encode(self, controlnet, images, control_strength, control_start_percent, control_end_percent):
control_frames = images.permute(0, 3, 1, 2).unsqueeze(0) * 2 - 1
controlnet = {
"control_model": controlnet,
"control_frames": control_frames,
"control_weights": control_strength,
"control_start": control_start_percent,
"control_end": control_end_percent,
}
return (controlnet,)
#region VideoDecode
class CogVideoDecode:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"vae": ("VAE",),
"samples": ("LATENT",),
"enable_vae_tiling": ("BOOLEAN", {"default": True, "tooltip": "Drastically reduces memory use but may introduce seams"}),
"tile_sample_min_height": ("INT", {"default": 240, "min": 16, "max": 2048, "step": 8, "tooltip": "Minimum tile height, default is half the height"}),
"tile_sample_min_width": ("INT", {"default": 360, "min": 16, "max": 2048, "step": 8, "tooltip": "Minimum tile width, default is half the width"}),
"tile_overlap_factor_height": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.001}),
"tile_overlap_factor_width": ("FLOAT", {"default": 0.2, "min": 0.0, "max": 1.0, "step": 0.001}),
"auto_tile_size": ("BOOLEAN", {"default": True, "tooltip": "Auto size based on height and width, default is half the size"}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("images",)
FUNCTION = "decode"
CATEGORY = "CogVideoWrapper"
def decode(self, vae, samples, enable_vae_tiling, tile_sample_min_height, tile_sample_min_width, tile_overlap_factor_height, tile_overlap_factor_width,
auto_tile_size=True, pipeline=None):
device = mm.get_torch_device()
offload_device = mm.unet_offload_device()
latents = samples["samples"]
additional_frames = samples.get("additional_frames", 0)
try:
vae.enable_slicing()
except:
pass
vae.to(device)
if enable_vae_tiling:
if auto_tile_size:
vae.enable_tiling()
else:
vae.enable_tiling(
tile_sample_min_height=tile_sample_min_height,
tile_sample_min_width=tile_sample_min_width,
tile_overlap_factor_height=tile_overlap_factor_height,
tile_overlap_factor_width=tile_overlap_factor_width,
)
else:
vae.disable_tiling()
latents = latents.to(vae.dtype).to(device)
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
latents = 1 / vae.config.scaling_factor * latents
try:
vae._clear_fake_context_parallel_cache()
except:
pass
try:
frames = vae.decode(latents[:, :, additional_frames:]).sample
except:
mm.soft_empty_cache()
log.warning("Failed to decode, retrying with tiling")
vae.enable_tiling()
frames = vae.decode(latents[:, :, additional_frames:]).sample
vae.disable_tiling()
vae.to(offload_device)
mm.soft_empty_cache()
video_processor = VideoProcessor(vae_scale_factor=8)
video_processor.config.do_resize = False
video = video_processor.postprocess_video(video=frames, output_type="pt")
video = video[0].permute(0, 2, 3, 1).cpu().float()
return (video,)
class CogVideoXFunResizeToClosestBucket:
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
@classmethod
def INPUT_TYPES(s):
return {"required": {
"images": ("IMAGE", ),
"base_resolution": ("INT", {"min": 64, "max": 1280, "step": 64, "default": 512, "tooltip": "Base resolution, closest training data bucket resolution is chosen based on the selection."}),
"upscale_method": (s.upscale_methods, {"default": "lanczos", "tooltip": "Upscale method to use"}),
"crop": (["disabled","center"],),
},
}
RETURN_TYPES = ("IMAGE", "INT", "INT")
RETURN_NAMES = ("images", "width", "height")
FUNCTION = "resize"
CATEGORY = "CogVideoWrapper"
def resize(self, images, base_resolution, upscale_method, crop):
from comfy.utils import common_upscale
from .cogvideox_fun.utils import ASPECT_RATIO_512, get_closest_ratio
B, H, W, C = images.shape
# Find most suitable height and width
aspect_ratio_sample_size = {key : [x / 512 * base_resolution for x in ASPECT_RATIO_512[key]] for key in ASPECT_RATIO_512.keys()}
closest_size, closest_ratio = get_closest_ratio(H, W, ratios=aspect_ratio_sample_size)
height, width = [int(x / 16) * 16 for x in closest_size]
log.info(f"Closest bucket size: {width}x{height}")
resized_images = images.clone().movedim(-1,1)
resized_images = common_upscale(resized_images, width, height, upscale_method, crop)
resized_images = resized_images.movedim(1,-1)
return (resized_images, width, height)
class CogVideoLatentPreview:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"samples": ("LATENT",),
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
"min_val": ("FLOAT", {"default": -0.15, "min": -1.0, "max": 0.0, "step": 0.001}),
"max_val": ("FLOAT", {"default": 0.15, "min": 0.0, "max": 1.0, "step": 0.001}),
"r_bias": ("FLOAT", {"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001}),
"g_bias": ("FLOAT", {"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001}),
"b_bias": ("FLOAT", {"default": 0.0, "min": -1.0, "max": 1.0, "step": 0.001}),
},
}
RETURN_TYPES = ("IMAGE", "STRING", )
RETURN_NAMES = ("images", "latent_rgb_factors",)
FUNCTION = "sample"
CATEGORY = "PyramidFlowWrapper"
def sample(self, samples, seed, min_val, max_val, r_bias, g_bias, b_bias):
mm.soft_empty_cache()
latents = samples["samples"].clone()
print("in sample", latents.shape)
latents = latents.permute(0, 2, 1, 3, 4) # [batch_size, num_channels, num_frames, height, width]
#[[0.0658900170023352, 0.04687556512203313, -0.056971557475649186], [-0.01265770449940036, -0.02814809569100843, -0.0768912512529372], [0.061456544746314665, 0.0005511617552452358, -0.0652574975291287], [-0.09020669168815276, -0.004755440180558637, -0.023763970904494294], [0.031766964513999865, -0.030959599938418375, 0.08654669098083616], [-0.005981764690055846, -0.08809119252349802, -0.06439852368217663], [-0.0212114426433989, 0.08894281999597677, 0.05155629477559985], [-0.013947446911030725, -0.08987475069900677, -0.08923124751217484], [-0.08235967967978511, 0.07268025379974379, 0.08830486164536037], [-0.08052049179735378, -0.050116143175332195, 0.02023752569687405], [-0.07607527759162447, 0.06827156419895981, 0.08678111754261035], [-0.04689089232553825, 0.017294986041038893, -0.10280492336438908], [-0.06105783150270304, 0.07311850680875913, 0.019995735372550075], [-0.09232589996527711, -0.012869815059053047, -0.04355587834255975], [-0.06679931010802251, 0.018399815879067458, 0.06802404982033876], [-0.013062632927118165, -0.04292991477896661, 0.07476243356192845]]
latent_rgb_factors =[[0.11945946736445662, 0.09919175788574555, -0.004832707433877734], [-0.0011977028264356232, 0.05496505130267682, 0.021321622433638193], [-0.014088548986590666, -0.008701477861945644, -0.020991313281459367], [0.03063921972519621, 0.12186477097625073, 0.0139593690235148], [0.0927403067854673, 0.030293187650929136, 0.05083134241694003], [0.0379112441305742, 0.04935199882777209, 0.058562766246777774], [0.017749911959153715, 0.008839453404921545, 0.036005638019226294], [0.10610119248526109, 0.02339855688237826, 0.057154257614084596], [0.1273639464837117, -0.010959856130713416, 0.043268631260428896], [-0.01873510946881321, 0.08220930648486932, 0.10613256772247093], [0.008429116376722327, 0.07623856561000408, 0.09295712117576727], [0.12938137079617007, 0.12360403483892413, 0.04478930933220116], [0.04565908794779364, 0.041064156741596365, -0.017695041535528512], [0.00019003240570281826, -0.013965147883381978, 0.05329669529635849], [0.08082391586738358, 0.11548306825496074, -0.021464170006615893], [-0.01517932393230994, -0.0057985555313003236, 0.07216646476618871]]
import random
random.seed(seed)
latent_rgb_factors = [[random.uniform(min_val, max_val) for _ in range(3)] for _ in range(16)]
out_factors = latent_rgb_factors
print(latent_rgb_factors)
latent_rgb_factors_bias = [0.085, 0.137, 0.158]
#latent_rgb_factors_bias = [r_bias, g_bias, b_bias]
latent_rgb_factors = torch.tensor(latent_rgb_factors, device=latents.device, dtype=latents.dtype).transpose(0, 1)
latent_rgb_factors_bias = torch.tensor(latent_rgb_factors_bias, device=latents.device, dtype=latents.dtype)
print("latent_rgb_factors", latent_rgb_factors.shape)
latent_images = []
for t in range(latents.shape[2]):
latent = latents[:, :, t, :, :]
latent = latent[0].permute(1, 2, 0)
latent_image = torch.nn.functional.linear(
latent,
latent_rgb_factors,
bias=latent_rgb_factors_bias
)
latent_images.append(latent_image)
latent_images = torch.stack(latent_images, dim=0)
print("latent_images", latent_images.shape)
latent_images_min = latent_images.min()
latent_images_max = latent_images.max()
latent_images = (latent_images - latent_images_min) / (latent_images_max - latent_images_min)
return (latent_images.float().cpu(), out_factors)
NODE_CLASS_MAPPINGS = {
"CogVideoSampler": CogVideoSampler,
"CogVideoDecode": CogVideoDecode,
"CogVideoTextEncode": CogVideoTextEncode,
"CogVideoImageEncode": CogVideoImageEncode,
"CogVideoTextEncodeCombine": CogVideoTextEncodeCombine,
"CogVideoTransformerEdit": CogVideoTransformerEdit,
"CogVideoContextOptions": CogVideoContextOptions,
"CogVideoControlNet": CogVideoControlNet,
"ToraEncodeTrajectory": ToraEncodeTrajectory,
"ToraEncodeOpticalFlow": ToraEncodeOpticalFlow,
"CogVideoXFasterCache": CogVideoXFasterCache,
"CogVideoXFunResizeToClosestBucket": CogVideoXFunResizeToClosestBucket,
"CogVideoLatentPreview": CogVideoLatentPreview,
"CogVideoXTorchCompileSettings": CogVideoXTorchCompileSettings,
"CogVideoImageEncodeFunInP": CogVideoImageEncodeFunInP,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"CogVideoSampler": "CogVideo Sampler",
"CogVideoDecode": "CogVideo Decode",
"CogVideoTextEncode": "CogVideo TextEncode",
"CogVideoImageEncode": "CogVideo ImageEncode",
"CogVideoTextEncodeCombine": "CogVideo TextEncode Combine",
"CogVideoTransformerEdit": "CogVideo TransformerEdit",
"CogVideoContextOptions": "CogVideo Context Options",
"ToraEncodeTrajectory": "Tora Encode Trajectory",
"ToraEncodeOpticalFlow": "Tora Encode OpticalFlow",
"CogVideoXFasterCache": "CogVideoX FasterCache",
"CogVideoXFunResizeToClosestBucket": "CogVideoXFun ResizeToClosestBucket",
"CogVideoLatentPreview": "CogVideo LatentPreview",
"CogVideoXTorchCompileSettings": "CogVideo TorchCompileSettings",
"CogVideoImageEncodeFunInP": "CogVideo ImageEncode FunInP",
}