|
import numpy as np |
|
import cv2 |
|
import torch |
|
|
|
|
|
|
|
|
|
def pdf2(sigma_matrix, grid): |
|
"""Calculate PDF of the bivariate Gaussian distribution. |
|
Args: |
|
sigma_matrix (ndarray): with the shape (2, 2) |
|
grid (ndarray): generated by :func:`mesh_grid`, |
|
with the shape (K, K, 2), K is the kernel size. |
|
Returns: |
|
kernel (ndarrray): un-normalized kernel. |
|
""" |
|
inverse_sigma = np.linalg.inv(sigma_matrix) |
|
kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2)) |
|
return kernel |
|
|
|
|
|
def mesh_grid(kernel_size): |
|
"""Generate the mesh grid, centering at zero. |
|
Args: |
|
kernel_size (int): |
|
Returns: |
|
xy (ndarray): with the shape (kernel_size, kernel_size, 2) |
|
xx (ndarray): with the shape (kernel_size, kernel_size) |
|
yy (ndarray): with the shape (kernel_size, kernel_size) |
|
""" |
|
ax = np.arange(-kernel_size // 2 + 1.0, kernel_size // 2 + 1.0) |
|
xx, yy = np.meshgrid(ax, ax) |
|
xy = np.hstack( |
|
( |
|
xx.reshape((kernel_size * kernel_size, 1)), |
|
yy.reshape(kernel_size * kernel_size, 1), |
|
) |
|
).reshape(kernel_size, kernel_size, 2) |
|
return xy, xx, yy |
|
|
|
|
|
def sigma_matrix2(sig_x, sig_y, theta): |
|
"""Calculate the rotated sigma matrix (two dimensional matrix). |
|
Args: |
|
sig_x (float): |
|
sig_y (float): |
|
theta (float): Radian measurement. |
|
Returns: |
|
ndarray: Rotated sigma matrix. |
|
""" |
|
d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]]) |
|
u_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) |
|
return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T)) |
|
|
|
|
|
def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True): |
|
"""Generate a bivariate isotropic or anisotropic Gaussian kernel. |
|
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored. |
|
Args: |
|
kernel_size (int): |
|
sig_x (float): |
|
sig_y (float): |
|
theta (float): Radian measurement. |
|
grid (ndarray, optional): generated by :func:`mesh_grid`, |
|
with the shape (K, K, 2), K is the kernel size. Default: None |
|
isotropic (bool): |
|
Returns: |
|
kernel (ndarray): normalized kernel. |
|
""" |
|
if grid is None: |
|
grid, _, _ = mesh_grid(kernel_size) |
|
if isotropic: |
|
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]]) |
|
else: |
|
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) |
|
kernel = pdf2(sigma_matrix, grid) |
|
kernel = kernel / np.sum(kernel) |
|
return kernel |
|
|
|
size = 99 |
|
sigma = 10 |
|
blur_kernel = bivariate_Gaussian(size, sigma, sigma, 0, grid=None, isotropic=True) |
|
blur_kernel = blur_kernel / blur_kernel[size // 2, size // 2] |
|
|
|
canvas_width, canvas_height = 256, 256 |
|
|
|
def get_flow(points, optical_flow, video_len): |
|
for i in range(video_len - 1): |
|
p = points[i] |
|
p1 = points[i + 1] |
|
optical_flow[i + 1, p[1], p[0], 0] = p1[0] - p[0] |
|
optical_flow[i + 1, p[1], p[0], 1] = p1[1] - p[1] |
|
|
|
return optical_flow |
|
|
|
|
|
def process_points(points, frames=49): |
|
defualt_points = [[128, 128]] * frames |
|
|
|
if len(points) < 2: |
|
return defualt_points |
|
|
|
elif len(points) >= frames: |
|
skip = len(points) // frames |
|
return points[::skip][: frames - 1] + points[-1:] |
|
else: |
|
insert_num = frames - len(points) |
|
insert_num_dict = {} |
|
interval = len(points) - 1 |
|
n = insert_num // interval |
|
m = insert_num % interval |
|
for i in range(interval): |
|
insert_num_dict[i] = n |
|
for i in range(m): |
|
insert_num_dict[i] += 1 |
|
|
|
res = [] |
|
for i in range(interval): |
|
insert_points = [] |
|
x0, y0 = points[i] |
|
x1, y1 = points[i + 1] |
|
|
|
delta_x = x1 - x0 |
|
delta_y = y1 - y0 |
|
for j in range(insert_num_dict[i]): |
|
x = x0 + (j + 1) / (insert_num_dict[i] + 1) * delta_x |
|
y = y0 + (j + 1) / (insert_num_dict[i] + 1) * delta_y |
|
insert_points.append([int(x), int(y)]) |
|
|
|
res += points[i : i + 1] + insert_points |
|
res += points[-1:] |
|
return res |
|
|
|
|
|
def read_points_from_list(traj_list, video_len=16, reverse=False): |
|
points = [] |
|
for point in traj_list: |
|
if isinstance(point, str): |
|
x, y = point.strip().split(",") |
|
else: |
|
x, y = point[0], point[1] |
|
points.append((int(x), int(y))) |
|
if reverse: |
|
points = points[::-1] |
|
|
|
if len(points) > video_len: |
|
skip = len(points) // video_len |
|
points = points[::skip] |
|
points = points[:video_len] |
|
|
|
return points |
|
|
|
|
|
def read_points_from_file(file, video_len=16, reverse=False): |
|
with open(file, "r") as f: |
|
lines = f.readlines() |
|
points = [] |
|
for line in lines: |
|
x, y = line.strip().split(",") |
|
points.append((int(x), int(y))) |
|
if reverse: |
|
points = points[::-1] |
|
|
|
if len(points) > video_len: |
|
skip = len(points) // video_len |
|
points = points[::skip] |
|
points = points[:video_len] |
|
|
|
return points |
|
|
|
|
|
def process_traj(trajs_list, num_frames, video_size, device="cpu"): |
|
if trajs_list and trajs_list[0] and (not isinstance(trajs_list[0][0], (list, tuple))): |
|
tmp = trajs_list |
|
trajs_list = [tmp] |
|
|
|
optical_flow = np.zeros((num_frames, video_size[0], video_size[1], 2), dtype=np.float32) |
|
processed_points = [] |
|
for traj_list in trajs_list: |
|
points = read_points_from_list(traj_list, video_len=num_frames) |
|
xy_range = 256 |
|
h, w = video_size |
|
points = process_points(points, num_frames) |
|
points = [[int(w * x / xy_range), int(h * y / xy_range)] for x, y in points] |
|
optical_flow = get_flow(points, optical_flow, video_len=num_frames) |
|
processed_points.append(points) |
|
|
|
print(f"received {len(trajs_list)} trajectorie(s)") |
|
|
|
for i in range(1, num_frames): |
|
optical_flow[i] = cv2.filter2D(optical_flow[i], -1, blur_kernel) |
|
|
|
optical_flow = torch.tensor(optical_flow).to(device) |
|
|
|
return optical_flow, processed_points |
|
|
|
|
|
def add_provided_traj(traj_name): |
|
global traj_list |
|
traj_list = PROVIDED_TRAJS[traj_name] |
|
traj_str = [f"{traj}" for traj in traj_list] |
|
return ", ".join(traj_str) |
|
|
|
|
|
def scale_traj_list_to_256(traj_list, canvas_width, canvas_height): |
|
scale_x = 256 / canvas_width |
|
scale_y = 256 / canvas_height |
|
scaled_traj_list = [[int(x * scale_x), int(y * scale_y)] for x, y in traj_list] |
|
return scaled_traj_list |