|
import os |
|
import json |
|
import hashlib |
|
import folder_paths |
|
import torch |
|
import numpy as np |
|
import comfy.utils |
|
import comfy.model_management |
|
from comfy_extras.nodes_compositing import JoinImageWithAlpha |
|
from server import PromptServer |
|
from nodes import MAX_RESOLUTION, NODE_CLASS_MAPPINGS as ALL_NODE_CLASS_MAPPINGS |
|
from PIL import Image, ImageDraw, ImageFilter, ImageOps |
|
from PIL.PngImagePlugin import PngInfo |
|
import torch.nn.functional as F |
|
from torchvision.transforms import Resize, CenterCrop, GaussianBlur |
|
from torchvision.transforms.functional import to_pil_image |
|
from .libs.log import log_node_info |
|
from .libs.utils import AlwaysEqualProxy, ByPassTypeTuple |
|
from .libs.cache import cache, update_cache, remove_cache |
|
from .libs.image import pil2tensor, tensor2pil, ResizeMode, get_new_bounds, RGB2RGBA, image2mask |
|
from .libs.colorfix import adain_color_fix, wavelet_color_fix |
|
from .libs.chooser import ChooserMessage, ChooserCancelled |
|
from .config import REMBG_DIR, REMBG_MODELS, HUMANPARSING_MODELS, MEDIAPIPE_MODELS, MEDIAPIPE_DIR |
|
|
|
any_type = AlwaysEqualProxy("*") |
|
|
|
class imageCount: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"images": ("IMAGE",), |
|
} |
|
} |
|
|
|
CATEGORY = "EasyUse/Image" |
|
|
|
RETURN_TYPES = ("INT",) |
|
RETURN_NAMES = ("count",) |
|
FUNCTION = "get_count" |
|
|
|
def get_count(self, images): |
|
return (images.size(0),) |
|
|
|
|
|
class imageInsetCrop: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"measurement": (['Pixels', 'Percentage'],), |
|
"left": ("INT", { |
|
"default": 0, |
|
"min": 0, |
|
"max": MAX_RESOLUTION, |
|
"step": 8 |
|
}), |
|
"right": ("INT", { |
|
"default": 0, |
|
"min": 0, |
|
"max": MAX_RESOLUTION, |
|
"step": 8 |
|
}), |
|
"top": ("INT", { |
|
"default": 0, |
|
"min": 0, |
|
"max": MAX_RESOLUTION, |
|
"step": 8 |
|
}), |
|
"bottom": ("INT", { |
|
"default": 0, |
|
"min": 0, |
|
"max": MAX_RESOLUTION, |
|
"step": 8 |
|
}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "crop" |
|
|
|
CATEGORY = "EasyUse/Image" |
|
|
|
|
|
def crop(self, measurement, left, right, top, bottom, image=None): |
|
"""Does the crop.""" |
|
|
|
_, height, width, _ = image.shape |
|
|
|
if measurement == 'Percentage': |
|
left = int(width - (width * (100 - left) / 100)) |
|
right = int(width - (width * (100 - right) / 100)) |
|
top = int(height - (height * (100 - top) / 100)) |
|
bottom = int(height - (height * (100 - bottom) / 100)) |
|
|
|
|
|
left = left // 8 * 8 |
|
right = right // 8 * 8 |
|
top = top // 8 * 8 |
|
bottom = bottom // 8 * 8 |
|
|
|
if left == 0 and right == 0 and bottom == 0 and top == 0: |
|
return (image,) |
|
|
|
inset_left, inset_right, inset_top, inset_bottom = get_new_bounds(width, height, left, right, |
|
top, bottom) |
|
if inset_top > inset_bottom: |
|
raise ValueError( |
|
f"Invalid cropping dimensions top ({inset_top}) exceeds bottom ({inset_bottom})") |
|
if inset_left > inset_right: |
|
raise ValueError( |
|
f"Invalid cropping dimensions left ({inset_left}) exceeds right ({inset_right})") |
|
|
|
log_node_info("Image Inset Crop", f'Cropping image {width}x{height} width inset by {inset_left},{inset_right}, ' + |
|
f'and height inset by {inset_top}, {inset_bottom}') |
|
image = image[:, inset_top:inset_bottom, inset_left:inset_right, :] |
|
|
|
return (image,) |
|
|
|
|
|
class imageSize: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("INT", "INT") |
|
RETURN_NAMES = ("width_int", "height_int") |
|
OUTPUT_NODE = True |
|
FUNCTION = "image_width_height" |
|
|
|
CATEGORY = "EasyUse/Image" |
|
|
|
def image_width_height(self, image): |
|
_, raw_H, raw_W, _ = image.shape |
|
|
|
width = raw_W |
|
height = raw_H |
|
|
|
if width is not None and height is not None: |
|
result = (width, height) |
|
else: |
|
result = (0, 0) |
|
return {"ui": {"text": "Width: "+str(width)+" , Height: "+str(height)}, "result": result} |
|
|
|
|
|
class imageSizeBySide: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"side": (["Longest", "Shortest"],) |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("INT",) |
|
RETURN_NAMES = ("resolution",) |
|
OUTPUT_NODE = True |
|
FUNCTION = "image_side" |
|
|
|
CATEGORY = "EasyUse/Image" |
|
|
|
def image_side(self, image, side): |
|
_, raw_H, raw_W, _ = image.shape |
|
|
|
width = raw_W |
|
height = raw_H |
|
if width is not None and height is not None: |
|
if side == "Longest": |
|
result = (width,) if width > height else (height,) |
|
elif side == 'Shortest': |
|
result = (width,) if width < height else (height,) |
|
else: |
|
result = (0,) |
|
return {"ui": {"text": str(result[0])}, "result": result} |
|
|
|
|
|
class imageSizeByLongerSide: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("INT",) |
|
RETURN_NAMES = ("resolution",) |
|
OUTPUT_NODE = True |
|
FUNCTION = "image_longer_side" |
|
|
|
CATEGORY = "EasyUse/Image" |
|
|
|
def image_longer_side(self, image): |
|
_, raw_H, raw_W, _ = image.shape |
|
|
|
width = raw_W |
|
height = raw_H |
|
if width is not None and height is not None: |
|
if width > height: |
|
result = (width,) |
|
else: |
|
result = (height,) |
|
else: |
|
result = (0,) |
|
return {"ui": {"text": str(result[0])}, "result": result} |
|
|
|
|
|
class imageScaleDown: |
|
crop_methods = ["disabled", "center"] |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"images": ("IMAGE",), |
|
"width": ( |
|
"INT", |
|
{"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}, |
|
), |
|
"height": ( |
|
"INT", |
|
{"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}, |
|
), |
|
"crop": (s.crop_methods,), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
CATEGORY = "EasyUse/Image" |
|
FUNCTION = "image_scale_down" |
|
|
|
def image_scale_down(self, images, width, height, crop): |
|
if crop == "center": |
|
old_width = images.shape[2] |
|
old_height = images.shape[1] |
|
old_aspect = old_width / old_height |
|
new_aspect = width / height |
|
x = 0 |
|
y = 0 |
|
if old_aspect > new_aspect: |
|
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2) |
|
elif old_aspect < new_aspect: |
|
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2) |
|
s = images[:, y: old_height - y, x: old_width - x, :] |
|
else: |
|
s = images |
|
|
|
results = [] |
|
for image in s: |
|
img = tensor2pil(image).convert("RGB") |
|
img = img.resize((width, height), Image.LANCZOS) |
|
results.append(pil2tensor(img)) |
|
|
|
return (torch.cat(results, dim=0),) |
|
|
|
|
|
class imageScaleDownBy(imageScaleDown): |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"images": ("IMAGE",), |
|
"scale_by": ( |
|
"FLOAT", |
|
{"default": 0.5, "min": 0.01, "max": 1.0, "step": 0.01}, |
|
), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
CATEGORY = "EasyUse/Image" |
|
FUNCTION = "image_scale_down_by" |
|
|
|
def image_scale_down_by(self, images, scale_by): |
|
width = images.shape[2] |
|
height = images.shape[1] |
|
new_width = int(width * scale_by) |
|
new_height = int(height * scale_by) |
|
return self.image_scale_down(images, new_width, new_height, "center") |
|
|
|
|
|
class imageScaleDownToSize(imageScaleDownBy): |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"images": ("IMAGE",), |
|
"size": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), |
|
"mode": ("BOOLEAN", {"default": True, "label_on": "max", "label_off": "min"}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
CATEGORY = "EasyUse/Image" |
|
FUNCTION = "image_scale_down_to_size" |
|
|
|
def image_scale_down_to_size(self, images, size, mode): |
|
width = images.shape[2] |
|
height = images.shape[1] |
|
|
|
if mode: |
|
scale_by = size / max(width, height) |
|
else: |
|
scale_by = size / min(width, height) |
|
|
|
scale_by = min(scale_by, 1.0) |
|
return self.image_scale_down_by(images, scale_by) |
|
|
|
class imageScaleToNormPixels: |
|
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"] |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"upscale_method": (s.upscale_methods,), |
|
"scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("image",) |
|
FUNCTION = "scale" |
|
CATEGORY = "EasyUse/Image" |
|
|
|
def scale(self, image, upscale_method, scale_by): |
|
height, width = image.shape[1:3] |
|
width = int(width * scale_by - width * scale_by % 8) |
|
height = int(height * scale_by - height * scale_by % 8) |
|
upscale_image_cls = ALL_NODE_CLASS_MAPPINGS['ImageScale'] |
|
image, = upscale_image_cls().upscale(image, upscale_method, width, height, "disabled") |
|
return (image,) |
|
|
|
|
|
class imageRatio: |
|
def __init__(self): |
|
pass |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("INT", "INT", "FLOAT", "FLOAT") |
|
RETURN_NAMES = ("width_ratio_int", "height_ratio_int", "width_ratio_float", "height_ratio_float") |
|
OUTPUT_NODE = True |
|
FUNCTION = "image_ratio" |
|
|
|
CATEGORY = "EasyUse/Image" |
|
|
|
def gcf(self, a, b): |
|
while b: |
|
a, b = b, a % b |
|
return a |
|
|
|
def image_ratio(self, image): |
|
_, raw_H, raw_W, _ = image.shape |
|
|
|
width = raw_W |
|
height = raw_H |
|
|
|
ratio = self.gcf(width, height) |
|
|
|
if width is not None and height is not None: |
|
width_ratio = width // ratio |
|
height_ratio = height // ratio |
|
result = (width_ratio, height_ratio, width_ratio, height_ratio) |
|
else: |
|
width_ratio = 0 |
|
height_ratio = 0 |
|
result = (0, 0, 0.0, 0.0) |
|
text = f"Image Ratio is {str(width_ratio)}:{str(height_ratio)}" |
|
|
|
return {"ui": {"text": text}, "result": result} |
|
|
|
|
|
|
|
class imagePixelPerfect: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
RESIZE_MODES = [ResizeMode.RESIZE.value, ResizeMode.INNER_FIT.value, ResizeMode.OUTER_FIT.value] |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"resize_mode": (RESIZE_MODES, {"default": ResizeMode.RESIZE.value}) |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("INT",) |
|
RETURN_NAMES = ("resolution",) |
|
OUTPUT_NODE = True |
|
FUNCTION = "execute" |
|
|
|
CATEGORY = "EasyUse/Image" |
|
|
|
def execute(self, image, resize_mode): |
|
|
|
_, raw_H, raw_W, _ = image.shape |
|
|
|
width = raw_W |
|
height = raw_H |
|
|
|
k0 = float(height) / float(raw_H) |
|
k1 = float(width) / float(raw_W) |
|
|
|
if resize_mode == ResizeMode.OUTER_FIT.value: |
|
estimation = min(k0, k1) * float(min(raw_H, raw_W)) |
|
else: |
|
estimation = max(k0, k1) * float(min(raw_H, raw_W)) |
|
|
|
result = int(np.round(estimation)) |
|
text = f"Width:{str(width)}\nHeight:{str(height)}\nPixelPerfect:{str(result)}" |
|
|
|
return {"ui": {"text": text}, "result": (result,)} |
|
|
|
|
|
from nodes import PreviewImage, SaveImage |
|
class imageSaveSimple: |
|
|
|
def __init__(self): |
|
self.output_dir = folder_paths.get_output_directory() |
|
self.type = "output" |
|
self.prefix_append = "" |
|
self.compress_level = 4 |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{ |
|
"images": ("IMAGE",), |
|
"filename_prefix": ("STRING", {"default": "ComfyUI"}), |
|
"only_preview": ("BOOLEAN", {"default": False}), |
|
}, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, |
|
} |
|
|
|
RETURN_TYPES = () |
|
FUNCTION = "save" |
|
OUTPUT_NODE = True |
|
CATEGORY = "EasyUse/Image" |
|
|
|
def save(self, images, filename_prefix="ComfyUI", only_preview=False, prompt=None, extra_pnginfo=None): |
|
if only_preview: |
|
PreviewImage().save_images(images, filename_prefix, prompt, extra_pnginfo) |
|
return () |
|
else: |
|
return SaveImage().save_images(images, filename_prefix, prompt, extra_pnginfo) |
|
|
|
|
|
class JoinImageBatch: |
|
"""Turns an image batch into one big image.""" |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"images": ("IMAGE",), |
|
"mode": (("horizontal", "vertical"), {"default": "horizontal"}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("image",) |
|
FUNCTION = "join" |
|
CATEGORY = "EasyUse/Image" |
|
|
|
def join(self, images, mode): |
|
n, h, w, c = images.shape |
|
image = None |
|
if mode == "vertical": |
|
|
|
image = images.reshape(1, n * h, w, c) |
|
elif mode == "horizontal": |
|
|
|
image = torch.transpose(torch.transpose(images, 1, 2).reshape(1, n * w, h, c), 1, 2) |
|
return (image,) |
|
|
|
class imageListToImageBatch: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"images": ("IMAGE",), |
|
}} |
|
|
|
INPUT_IS_LIST = True |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "doit" |
|
|
|
CATEGORY = "EasyUse/Image" |
|
|
|
def doit(self, images): |
|
if len(images) <= 1: |
|
return (images[0],) |
|
else: |
|
image_shape = images[0].shape |
|
for i, img in enumerate(images): |
|
if image_shape[1:] == img[1:]: |
|
continue |
|
else: |
|
images[i] = comfy.utils.common_upscale(img.movedim(-1, 1), img.shape[2], image_shape[1], "lanczos", |
|
"center").movedim(1, -1) |
|
images = torch.cat(images, dim=0) |
|
return (images,) |
|
|
|
|
|
class imageBatchToImageList: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": {"image": ("IMAGE",), }} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
OUTPUT_IS_LIST = (True,) |
|
FUNCTION = "doit" |
|
|
|
CATEGORY = "EasyUse/Image" |
|
|
|
def doit(self, image): |
|
images = [image[i:i + 1, ...] for i in range(image.shape[0])] |
|
return (images,) |
|
|
|
|
|
class imageSplitList: |
|
@classmethod |
|
|
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"images": ("IMAGE",), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE",) |
|
RETURN_NAMES = ("images", "images", "images",) |
|
FUNCTION = "doit" |
|
CATEGORY = "EasyUse/Image" |
|
|
|
def doit(self, images): |
|
length = len(images) |
|
new_images = ([], [], []) |
|
if length % 3 == 0: |
|
for index, img in enumerate(images): |
|
if index % 3 == 0: |
|
new_images[0].append(img) |
|
elif (index+1) % 3 == 0: |
|
new_images[2].append(img) |
|
else: |
|
new_images[1].append(img) |
|
elif length % 2 == 0: |
|
for index, img in enumerate(images): |
|
if index % 2 == 0: |
|
new_images[0].append(img) |
|
else: |
|
new_images[1].append(img) |
|
return new_images |
|
|
|
class imageSplitGrid: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"images": ("IMAGE",), |
|
"row": ("INT", {"default": 1,"min": 1,"max": 10,"step": 1,}), |
|
"column": ("INT", {"default": 1,"min": 1,"max": 10,"step": 1,}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("images",) |
|
FUNCTION = "doit" |
|
CATEGORY = "EasyUse/Image" |
|
|
|
def crop(self, image, width, height, x, y): |
|
x = min(x, image.shape[2] - 1) |
|
y = min(y, image.shape[1] - 1) |
|
to_x = width + x |
|
to_y = height + y |
|
img = image[:, y:to_y, x:to_x, :] |
|
return img |
|
|
|
def doit(self, images, row, column): |
|
_, height, width, _ = images.shape |
|
sub_width = width // column |
|
sub_height = height // row |
|
new_images = [] |
|
for i in range(row): |
|
for j in range(column): |
|
new_images.append(self.crop(images, sub_width, sub_height, j * sub_width, i * sub_height)) |
|
|
|
return (torch.cat(new_images, dim=0),) |
|
|
|
class imageSplitTiles: |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"overlap_ratio": ("FLOAT", {"default": 0, "min": 0, "max": 0.5, "step": 0.01, }), |
|
"overlap_offset": ("INT", {"default": 0, "min": - MAX_RESOLUTION // 2, "max": MAX_RESOLUTION // 2, "step": 1, }), |
|
"tiles_rows": ("INT", {"default": 2, "min": 1, "max": 50, "step": 1}), |
|
"tiles_cols": ("INT", {"default": 2, "min": 1, "max": 50, "step": 1}), |
|
}, |
|
"optional": { |
|
"norm": ("BOOLEAN", {"default": True}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", "OVERLAP", "INT") |
|
RETURN_NAMES = ("tiles", "masks", "overlap", "total") |
|
FUNCTION = "doit" |
|
CATEGORY = "EasyUse/Image" |
|
|
|
def doit(self, image, overlap_ratio, overlap_offset, tiles_rows, tiles_cols, norm=True): |
|
height, width = image.shape[1:3] |
|
|
|
total = tiles_rows * tiles_cols |
|
tile_w = int(width // tiles_cols) |
|
tile_h = int(height // tiles_rows) |
|
|
|
overlap_w = int(tile_w * overlap_ratio) + overlap_offset |
|
overlap_h = int(tile_h * overlap_ratio) + overlap_offset |
|
|
|
overlap_w = min(tile_w // 2, overlap_w) |
|
overlap_h = min(tile_h // 2, overlap_h) |
|
|
|
if norm: |
|
overlap_w = int(overlap_w - overlap_w % 8) |
|
overlap_h = int(overlap_h - overlap_h % 8) |
|
|
|
if tiles_rows == 1: |
|
overlap_h = 0 |
|
if tiles_cols == 1: |
|
overlap_w = 0 |
|
|
|
solid_mask_cls = ALL_NODE_CLASS_MAPPINGS['SolidMask'] |
|
feather_mask_cls = ALL_NODE_CLASS_MAPPINGS['FeatherMask'] |
|
|
|
tiles, masks = [], [] |
|
|
|
x, y = 0, 0 |
|
for i in range(tiles_rows): |
|
for j in range(tiles_cols): |
|
y1 = i * tile_h |
|
x1 = j * tile_w |
|
|
|
if i > 0: |
|
y1 -= overlap_h |
|
if j > 0: |
|
x1 -= overlap_w |
|
|
|
y2 = y1 + tile_h + overlap_h |
|
x2 = x1 + tile_w + overlap_w |
|
|
|
if y2 > height: |
|
y2 = height |
|
y1 = y2 - tile_h - overlap_h |
|
if x2 > width: |
|
x2 = width |
|
x1 = x2 - tile_w - overlap_w |
|
|
|
tile = image[:, y1:y2, x1:x2, :] |
|
h = tile.shape[1] |
|
w = tile.shape[2] |
|
tiles.append(tile) |
|
|
|
fearing_left = overlap_w if overlap_w * j > 0 else 0 |
|
fearing_top = overlap_h if overlap_h * i > 0 else 0 |
|
fearing_right = 0 |
|
fearing_bottom = 0 |
|
|
|
mask, = solid_mask_cls().solid(1, w, h) |
|
mask, = feather_mask_cls().feather(mask, fearing_left, fearing_top, fearing_right, fearing_bottom) |
|
masks.append(mask) |
|
|
|
tiles = torch.cat(tiles, dim=0) |
|
masks = torch.cat(masks, dim=0) |
|
|
|
return (tiles, masks, (overlap_w, overlap_h, tile_w, tile_h, tiles_rows, tiles_cols), total) |
|
|
|
class imageTilesFromBatch: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"tiles": ("IMAGE",), |
|
"masks": ("MASK",), |
|
"overlap": ("OVERLAP",), |
|
"index":("INT", {"default": 0, "min": 0, "max": 10000, "step": 1}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", "INT", "INT") |
|
RETURN_NAMES = ("image", "mask", "x", "y") |
|
FUNCTION = "doit" |
|
CATEGORY = "EasyUse/Image" |
|
|
|
def imageFromBatch(self, image, batch_index, length=1): |
|
s_in = image |
|
batch_index = min(s_in.shape[0] - 1, batch_index) |
|
length = min(s_in.shape[0] - batch_index, length) |
|
s = s_in[batch_index:batch_index + length].clone() |
|
return s |
|
|
|
def maskFromBatch(self, mask, start, length=1): |
|
if length > mask.shape[0]: |
|
length = mask.shape[0] |
|
start = min(start, mask.shape[0]-1) |
|
length = min(mask.shape[0]-start, length) |
|
return mask[start:start + length] |
|
|
|
def doit(self, tiles, masks, overlap, index): |
|
tile = self.imageFromBatch(tiles, index) |
|
mask = self.maskFromBatch(masks, index) |
|
overlap_w, overlap_h, tile_w, tile_h, tiles_rows, tiles_cols = overlap |
|
|
|
x = tile_w * (index % tiles_cols) - overlap_w if (index % tiles_cols) > 0 else 0 |
|
y = tile_h * (index // tiles_cols) - overlap_h if tiles_rows > 1 and index > tiles_cols - 1 else 0 |
|
|
|
return (tile, mask, x, y) |
|
|
|
|
|
|
|
class imagesSplitImage: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"images": ("IMAGE",), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "IMAGE", "IMAGE", "IMAGE", "IMAGE") |
|
RETURN_NAMES = ("image1", "image2", "image3", "image4", "image5") |
|
FUNCTION = "split" |
|
CATEGORY = "EasyUse/Image" |
|
|
|
def split(self, images,): |
|
new_images = torch.chunk(images, len(images), dim=0) |
|
return new_images |
|
|
|
class imageConcat: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": { |
|
"image1": ("IMAGE",), |
|
"image2": ("IMAGE",), |
|
"direction": (['right','down','left','up',],{"default": 'right'}), |
|
"match_image_size": ("BOOLEAN", {"default": False}), |
|
}} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
FUNCTION = "concat" |
|
CATEGORY = "EasyUse/Image" |
|
|
|
def concat(self, image1, image2, direction, match_image_size): |
|
if image1 is None: |
|
return (image2,) |
|
elif image2 is None: |
|
return (image1,) |
|
if match_image_size: |
|
image2 = torch.nn.functional.interpolate(image2, size=(image1.shape[2], image1.shape[3]), mode="bilinear") |
|
if direction == 'right': |
|
row = torch.cat((image1, image2), dim=2) |
|
elif direction == 'down': |
|
row = torch.cat((image1, image2), dim=1) |
|
elif direction == 'left': |
|
row = torch.cat((image2, image1), dim=2) |
|
elif direction == 'up': |
|
row = torch.cat((image2, image1), dim=1) |
|
return (row,) |
|
|
|
|
|
from .briaai.rembg import BriaRMBG, preprocess_image, postprocess_image |
|
from .libs.utils import get_local_filepath, easySave, install_package |
|
class imageRemBg: |
|
@classmethod |
|
def INPUT_TYPES(self): |
|
return { |
|
"required": { |
|
"images": ("IMAGE",), |
|
"rem_mode": (("RMBG-2.0", "RMBG-1.4","Inspyrenet"), {"default": "RMBG-1.4"}), |
|
"image_output": (["Hide", "Preview", "Save", "Hide/Save"], {"default": "Preview"}), |
|
"save_prefix": ("STRING", {"default": "ComfyUI"}), |
|
|
|
}, |
|
"optional":{ |
|
"torchscript_jit": ("BOOLEAN", {"default": False}), |
|
}, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK") |
|
RETURN_NAMES = ("image", "mask") |
|
FUNCTION = "remove" |
|
OUTPUT_NODE = True |
|
|
|
CATEGORY = "EasyUse/Image" |
|
|
|
def remove(self, rem_mode, images, image_output, save_prefix, torchscript_jit=False, prompt=None, extra_pnginfo=None): |
|
new_images = list() |
|
masks = list() |
|
if rem_mode == "RMBG-2.0": |
|
repo_id = REMBG_MODELS[rem_mode]['model_url'] |
|
model_path = os.path.join(REMBG_DIR, 'RMBG-2.0') |
|
from huggingface_hub import snapshot_download |
|
from transformers import AutoModelForImageSegmentation |
|
snapshot_download(repo_id=repo_id, local_dir=model_path, ignore_patterns=["*.md", "*.txt"]) |
|
model = AutoModelForImageSegmentation.from_pretrained(model_path, trust_remote_code=True) |
|
torch.set_float32_matmul_precision('high') |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
model.eval() |
|
|
|
from torchvision import transforms |
|
transform_image = transforms.Compose([ |
|
transforms.Resize((1024, 1024)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|
]) |
|
for image in images: |
|
orig_im = tensor2pil(image) |
|
input_tensor = transform_image(orig_im).unsqueeze(0).to(device) |
|
|
|
with torch.no_grad(): |
|
preds = model(input_tensor)[-1].sigmoid().cpu() |
|
pred = preds[0].squeeze() |
|
|
|
mask = transforms.ToPILImage()(pred) |
|
mask = mask.resize(orig_im.size) |
|
|
|
new_im = orig_im.copy() |
|
new_im.putalpha(mask) |
|
|
|
new_im_tensor = pil2tensor(new_im) |
|
mask_tensor = pil2tensor(mask) |
|
|
|
new_images.append(new_im_tensor) |
|
masks.append(mask_tensor) |
|
|
|
torch.cuda.empty_cache() |
|
new_images = torch.cat(new_images, dim=0) |
|
masks = torch.cat(masks, dim=0) |
|
|
|
elif rem_mode == "RMBG-1.4": |
|
|
|
model_url = REMBG_MODELS[rem_mode]['model_url'] |
|
suffix = model_url.split(".")[-1] |
|
model_path = get_local_filepath(model_url, REMBG_DIR, rem_mode+'.'+suffix) |
|
|
|
net = BriaRMBG() |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
net.load_state_dict(torch.load(model_path, map_location=device)) |
|
net.to(device) |
|
net.eval() |
|
|
|
model_input_size = [1024, 1024] |
|
for image in images: |
|
orig_im = tensor2pil(image) |
|
w, h = orig_im.size |
|
image = preprocess_image(orig_im, model_input_size).to(device) |
|
|
|
result = net(image) |
|
result_image = postprocess_image(result[0][0], (h, w)) |
|
mask_im = Image.fromarray(result_image) |
|
new_im = Image.new("RGBA", mask_im.size, (0,0,0,0)) |
|
new_im.paste(orig_im, mask=mask_im) |
|
|
|
new_images.append(pil2tensor(new_im)) |
|
masks.append(pil2tensor(mask_im)) |
|
|
|
new_images = torch.cat(new_images, dim=0) |
|
masks = torch.cat(masks, dim=0) |
|
|
|
elif rem_mode == "Inspyrenet": |
|
from tqdm import tqdm |
|
try: |
|
from transparent_background import Remover |
|
except: |
|
install_package("transparent_background") |
|
from transparent_background import Remover |
|
|
|
remover = Remover(jit=torchscript_jit) |
|
|
|
for img in tqdm(images, "Inspyrenet Rembg"): |
|
mid = remover.process(tensor2pil(img), type='rgba') |
|
out = pil2tensor(mid) |
|
new_images.append(out) |
|
mask = out[:, :, :, 3] |
|
masks.append(mask) |
|
new_images = torch.cat(new_images, dim=0) |
|
masks = torch.cat(masks, dim=0) |
|
|
|
results = easySave(new_images, save_prefix, image_output, prompt, extra_pnginfo) |
|
|
|
if image_output in ("Hide", "Hide/Save"): |
|
return {"ui": {}, |
|
"result": (new_images, masks)} |
|
|
|
return {"ui": {"images": results}, |
|
"result": (new_images, masks)} |
|
|
|
|
|
class imageChooser(PreviewImage): |
|
@classmethod |
|
def INPUT_TYPES(self): |
|
return { |
|
"required":{ |
|
"mode": (['Always Pause', 'Keep Last Selection'], {"default": "Always Pause"}), |
|
}, |
|
"optional": { |
|
"images": ("IMAGE",), |
|
}, |
|
"hidden": {"prompt": "PROMPT", "my_unique_id": "UNIQUE_ID", "extra_pnginfo": "EXTRA_PNGINFO"}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("image",) |
|
FUNCTION = "chooser" |
|
OUTPUT_NODE = True |
|
INPUT_IS_LIST = True |
|
CATEGORY = "EasyUse/Image" |
|
|
|
last_ic = {} |
|
@classmethod |
|
def IS_CHANGED(cls, my_unique_id, **kwargs): |
|
return cls.last_ic[my_unique_id[0]] |
|
|
|
def tensor_bundle(self, tensor_in: torch.Tensor, picks): |
|
if tensor_in is not None and len(picks): |
|
batch = tensor_in.shape[0] |
|
return torch.cat(tuple([tensor_in[(x) % batch].unsqueeze_(0) for x in picks])).reshape( |
|
[-1] + list(tensor_in.shape[1:])) |
|
else: |
|
return None |
|
|
|
def chooser(self, prompt=None, my_unique_id=None, extra_pnginfo=None, **kwargs): |
|
id = my_unique_id[0] |
|
if id not in ChooserMessage.stash: |
|
ChooserMessage.stash[id] = {} |
|
my_stash = ChooserMessage.stash[id] |
|
|
|
|
|
if 'images' in kwargs: |
|
my_stash['images'] = kwargs['images'] |
|
else: |
|
kwargs['images'] = my_stash.get('images', None) |
|
|
|
if (kwargs['images'] is None): |
|
return (None, None, None, "") |
|
|
|
images_in = torch.cat(kwargs.pop('images')) |
|
self.batch = images_in.shape[0] |
|
for x in kwargs: kwargs[x] = kwargs[x][0] |
|
result = self.save_images(images=images_in, prompt=prompt) |
|
|
|
images = result['ui']['images'] |
|
PromptServer.instance.send_sync("easyuse-image-choose", {"id": id, "urls": images}) |
|
|
|
|
|
mode = kwargs.pop('mode', 'Always Pause') |
|
last_choosen = None |
|
if mode == 'Keep Last Selection': |
|
if not extra_pnginfo: |
|
print("Error: extra_pnginfo is empty") |
|
elif (not isinstance(extra_pnginfo[0], dict) or "workflow" not in extra_pnginfo[0]): |
|
print("Error: extra_pnginfo[0] is not a dict or missing 'workflow' key") |
|
else: |
|
workflow = extra_pnginfo[0]["workflow"] |
|
node = next((x for x in workflow["nodes"] if str(x["id"]) == id), None) |
|
if node: |
|
last_choosen = node['properties']['values'] |
|
|
|
|
|
try: |
|
selections = ChooserMessage.waitForMessage(id, asList=True) if last_choosen is None or len(last_choosen)<1 else last_choosen |
|
choosen = [x for x in selections if x >= 0] if len(selections)>1 else [0] |
|
except ChooserCancelled: |
|
raise comfy.model_management.InterruptProcessingException() |
|
|
|
return {"ui": {"images": images}, |
|
"result": (self.tensor_bundle(images_in, choosen),)} |
|
|
|
class imageColorMatch(PreviewImage): |
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
return { |
|
"required": { |
|
"image_ref": ("IMAGE",), |
|
"image_target": ("IMAGE",), |
|
"method": (['wavelet', 'adain', 'mkl', 'hm', 'reinhard', 'mvgd', 'hm-mvgd-hm', 'hm-mkl-hm'],), |
|
"image_output": (["Hide", "Preview", "Save", "Hide/Save"], {"default": "Preview"}), |
|
"save_prefix": ("STRING", {"default": "ComfyUI"}), |
|
}, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, |
|
} |
|
|
|
CATEGORY = "EasyUse/Image" |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("image",) |
|
OUTPUT_NODE = True |
|
FUNCTION = "color_match" |
|
|
|
def color_match(self, image_ref, image_target, method, image_output, save_prefix, prompt=None, extra_pnginfo=None): |
|
if method in ["wavelet", "adain"]: |
|
result_images = wavelet_color_fix(tensor2pil(image_target), tensor2pil(image_ref)) if method == 'wavelet' else adain_color_fix(tensor2pil(image_target), tensor2pil(image_ref)) |
|
new_images = pil2tensor(result_images) |
|
else: |
|
try: |
|
from color_matcher import ColorMatcher |
|
except: |
|
install_package("color-matcher") |
|
from color_matcher import ColorMatcher |
|
image_ref = image_ref.cpu() |
|
image_target = image_target.cpu() |
|
batch_size = image_target.size(0) |
|
out = [] |
|
images_target = image_target.squeeze() |
|
images_ref = image_ref.squeeze() |
|
|
|
image_ref_np = images_ref.numpy() |
|
images_target_np = images_target.numpy() |
|
if image_ref.size(0) > 1 and image_ref.size(0) != batch_size: |
|
raise ValueError("ColorMatch: Use either single reference image or a matching batch of reference images.") |
|
cm = ColorMatcher() |
|
for i in range(batch_size): |
|
image_target_np = images_target_np if batch_size == 1 else images_target[i].numpy() |
|
image_ref_np_i = image_ref_np if image_ref.size(0) == 1 else images_ref[i].numpy() |
|
try: |
|
image_result = cm.transfer(src=image_target_np, ref=image_ref_np_i, method=method) |
|
except BaseException as e: |
|
print(f"Error occurred during transfer: {e}") |
|
break |
|
out.append(torch.from_numpy(image_result)) |
|
|
|
new_images = torch.stack(out, dim=0).to(torch.float32) |
|
|
|
results = easySave(new_images, save_prefix, image_output, prompt, extra_pnginfo) |
|
|
|
if image_output in ("Hide", "Hide/Save"): |
|
return {"ui": {}, |
|
"result": (new_images,)} |
|
|
|
return {"ui": {"images": results}, |
|
"result": (new_images,)} |
|
|
|
class imageDetailTransfer: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"target": ("IMAGE",), |
|
"source": ("IMAGE",), |
|
"mode": (["add", "multiply", "screen", "overlay", "soft_light", "hard_light", "color_dodge", "color_burn", "difference", "exclusion", "divide",],{"default": "add"}), |
|
"blur_sigma": ("FLOAT", {"default": 1.0, "min": 0.1, "max": 100.0, "step": 0.01}), |
|
"blend_factor": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.001, "round": 0.001}), |
|
"image_output": (["Hide", "Preview", "Save", "Hide/Save"], {"default": "Preview"}), |
|
"save_prefix": ("STRING", {"default": "ComfyUI"}), |
|
}, |
|
"optional": { |
|
"mask": ("MASK",), |
|
}, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("image",) |
|
OUTPUT_NODE = True |
|
FUNCTION = "transfer" |
|
CATEGORY = "EasyUse/Image" |
|
|
|
|
|
|
|
def transfer(self, target, source, mode, blur_sigma, blend_factor, image_output, save_prefix, mask=None, prompt=None, extra_pnginfo=None): |
|
batch_size, height, width, _ = source.shape |
|
device = comfy.model_management.get_torch_device() |
|
target_tensor = target.permute(0, 3, 1, 2).clone().to(device) |
|
source_tensor = source.permute(0, 3, 1, 2).clone().to(device) |
|
|
|
if target.shape[1:] != source.shape[1:]: |
|
target_tensor = comfy.utils.common_upscale(target_tensor, width, height, "bilinear", "disabled") |
|
if mask is not None and target.shape[1:] != mask.shape[1:]: |
|
mask = mask.unsqueeze(1) |
|
mask = F.interpolate(mask, size=(height, width), mode="bilinear") |
|
mask = mask.squeeze(1) |
|
|
|
if source.shape[0] < batch_size: |
|
source = source[0].unsqueeze(0).repeat(batch_size, 1, 1, 1) |
|
|
|
kernel_size = int(6 * int(blur_sigma) + 1) |
|
|
|
gaussian_blur = GaussianBlur(kernel_size=(kernel_size, kernel_size), sigma=(blur_sigma, blur_sigma)) |
|
|
|
blurred_target = gaussian_blur(target_tensor) |
|
blurred_source = gaussian_blur(source_tensor) |
|
|
|
if mode == "add": |
|
new_image = (source_tensor - blurred_source) + blurred_target |
|
elif mode == "multiply": |
|
new_image = source_tensor * blurred_target |
|
elif mode == "screen": |
|
new_image = 1 - (1 - source_tensor) * (1 - blurred_target) |
|
elif mode == "overlay": |
|
new_image = torch.where(blurred_target < 0.5, 2 * source_tensor * blurred_target, |
|
1 - 2 * (1 - source_tensor) * (1 - blurred_target)) |
|
elif mode == "soft_light": |
|
new_image = (1 - 2 * blurred_target) * source_tensor ** 2 + 2 * blurred_target * source_tensor |
|
elif mode == "hard_light": |
|
new_image = torch.where(source_tensor < 0.5, 2 * source_tensor * blurred_target, |
|
1 - 2 * (1 - source_tensor) * (1 - blurred_target)) |
|
elif mode == "difference": |
|
new_image = torch.abs(blurred_target - source_tensor) |
|
elif mode == "exclusion": |
|
new_image = 0.5 - 2 * (blurred_target - 0.5) * (source_tensor - 0.5) |
|
elif mode == "color_dodge": |
|
new_image = blurred_target / (1 - source_tensor) |
|
elif mode == "color_burn": |
|
new_image = 1 - (1 - blurred_target) / source_tensor |
|
elif mode == "divide": |
|
new_image = (source_tensor / blurred_source) * blurred_target |
|
else: |
|
new_image = source_tensor |
|
|
|
new_image = torch.lerp(target_tensor, new_image, blend_factor) |
|
if mask is not None: |
|
mask = mask.to(device) |
|
new_image = torch.lerp(target_tensor, new_image, mask) |
|
new_image = torch.clamp(new_image, 0, 1) |
|
new_image = new_image.permute(0, 2, 3, 1).cpu().float() |
|
|
|
results = easySave(new_image, save_prefix, image_output, prompt, extra_pnginfo) |
|
|
|
if image_output in ("Hide", "Hide/Save"): |
|
return {"ui": {}, |
|
"result": (new_image,)} |
|
|
|
return {"ui": {"images": results}, |
|
"result": (new_image,)} |
|
|
|
|
|
from .libs.image import ci |
|
class imageInterrogator: |
|
@classmethod |
|
def INPUT_TYPES(self): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"mode": (['fast','classic','best','negative'],), |
|
"use_lowvram": ("BOOLEAN", {"default": True}), |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("STRING",) |
|
RETURN_NAMES = ("prompt",) |
|
FUNCTION = "interrogate" |
|
CATEGORY = "EasyUse/Image" |
|
OUTPUT_NODE = False |
|
OUTPUT_IS_LIST = (True,) |
|
|
|
def interrogate(self, image, mode, use_lowvram=False): |
|
prompt = ci.image_to_prompt(image, mode, low_vram=use_lowvram) |
|
return (prompt,) |
|
|
|
|
|
class humanSegmentation: |
|
|
|
@classmethod |
|
def INPUT_TYPES(cls): |
|
|
|
return { |
|
"required":{ |
|
"image": ("IMAGE",), |
|
"method": (["selfie_multiclass_256x256", "human_parsing_lip", "human_parts (deeplabv3p)"],), |
|
"confidence": ("FLOAT", {"default": 0.4, "min": 0.05, "max": 0.95, "step": 0.01},), |
|
"crop_multi": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 10.0, "step": 0.001},), |
|
}, |
|
"hidden": { |
|
"prompt": "PROMPT", |
|
"my_unique_id": "UNIQUE_ID", |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", "BBOX") |
|
RETURN_NAMES = ("image", "mask", "bbox") |
|
FUNCTION = "parsing" |
|
CATEGORY = "EasyUse/Segmentation" |
|
|
|
def get_mediapipe_image(self, image: Image): |
|
import mediapipe as mp |
|
|
|
numpy_image = np.asarray(image) |
|
image_format = mp.ImageFormat.SRGB |
|
|
|
if numpy_image.shape[-1] == 4: |
|
image_format = mp.ImageFormat.SRGBA |
|
elif numpy_image.shape[-1] == 3: |
|
image_format = mp.ImageFormat.SRGB |
|
numpy_image = cv2.cvtColor(numpy_image, cv2.COLOR_BGR2RGB) |
|
return mp.Image(image_format=image_format, data=numpy_image) |
|
|
|
def parsing(self, image, confidence, method, crop_multi, prompt=None, my_unique_id=None): |
|
mask_components = [] |
|
if my_unique_id in prompt: |
|
if prompt[my_unique_id]["inputs"]['mask_components']: |
|
mask_components = prompt[my_unique_id]["inputs"]['mask_components'].split(',') |
|
mask_components = list(map(int, mask_components)) |
|
if method == 'selfie_multiclass_256x256': |
|
try: |
|
import mediapipe as mp |
|
except: |
|
install_package("mediapipe") |
|
import mediapipe as mp |
|
|
|
from functools import reduce |
|
|
|
model_path = get_local_filepath(MEDIAPIPE_MODELS['selfie_multiclass_256x256']['model_url'], MEDIAPIPE_DIR) |
|
model_asset_buffer = None |
|
with open(model_path, "rb") as f: |
|
model_asset_buffer = f.read() |
|
image_segmenter_base_options = mp.tasks.BaseOptions(model_asset_buffer=model_asset_buffer) |
|
options = mp.tasks.vision.ImageSegmenterOptions( |
|
base_options=image_segmenter_base_options, |
|
running_mode=mp.tasks.vision.RunningMode.IMAGE, |
|
output_category_mask=True) |
|
|
|
ret_images = [] |
|
ret_masks = [] |
|
|
|
with mp.tasks.vision.ImageSegmenter.create_from_options(options) as segmenter: |
|
for img in image: |
|
_image = torch.unsqueeze(img, 0) |
|
orig_image = tensor2pil(_image).convert('RGB') |
|
|
|
i = 255. * img.cpu().numpy() |
|
image_pil = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) |
|
|
|
mask_background_array = np.zeros((image_pil.size[0], image_pil.size[1], 4), dtype=np.uint8) |
|
mask_background_array[:] = (0, 0, 0, 255) |
|
mask_foreground_array = np.zeros((image_pil.size[0], image_pil.size[1], 4), dtype=np.uint8) |
|
mask_foreground_array[:] = (255, 255, 255, 255) |
|
|
|
media_pipe_image = self.get_mediapipe_image(image=image_pil) |
|
segmented_masks = segmenter.segment(media_pipe_image) |
|
masks = [] |
|
for i, com in enumerate(mask_components): |
|
masks.append(segmented_masks.confidence_masks[com]) |
|
|
|
image_data = media_pipe_image.numpy_view() |
|
image_shape = image_data.shape |
|
|
|
if image_shape[-1] == 3: |
|
image_shape = (image_shape[0], image_shape[1], 4) |
|
mask_background_array = np.zeros(image_shape, dtype=np.uint8) |
|
mask_background_array[:] = (0, 0, 0, 255) |
|
mask_foreground_array = np.zeros(image_shape, dtype=np.uint8) |
|
mask_foreground_array[:] = (255, 255, 255, 255) |
|
mask_arrays = [] |
|
if len(masks) == 0: |
|
mask_arrays.append(mask_background_array) |
|
else: |
|
for i, mask in enumerate(masks): |
|
condition = np.stack((mask.numpy_view(),) * image_shape[-1], axis=-1) > confidence |
|
mask_array = np.where(condition, mask_foreground_array, mask_background_array) |
|
mask_arrays.append(mask_array) |
|
|
|
merged_mask_arrays = reduce(np.maximum, mask_arrays) |
|
|
|
mask_image = Image.fromarray(merged_mask_arrays) |
|
|
|
tensor_mask = mask_image.convert("RGB") |
|
tensor_mask = np.array(tensor_mask).astype(np.float32) / 255.0 |
|
tensor_mask = torch.from_numpy(tensor_mask)[None,] |
|
_mask = tensor_mask.squeeze(3)[..., 0] |
|
|
|
_mask = tensor2pil(tensor_mask).convert('L') |
|
|
|
ret_image = RGB2RGBA(orig_image, _mask) |
|
ret_images.append(pil2tensor(ret_image)) |
|
ret_masks.append(image2mask(_mask)) |
|
|
|
output_image = torch.cat(ret_images, dim=0) |
|
mask = torch.cat(ret_masks, dim=0) |
|
|
|
elif method == "human_parsing_lip": |
|
from .human_parsing.run_parsing import HumanParsing |
|
onnx_path = os.path.join(folder_paths.models_dir, 'onnx') |
|
model_path = get_local_filepath(HUMANPARSING_MODELS['parsing_lip']['model_url'], onnx_path) |
|
parsing = HumanParsing(model_path=model_path) |
|
model_image = image.squeeze(0) |
|
model_image = model_image.permute((2, 0, 1)) |
|
model_image = to_pil_image(model_image) |
|
|
|
map_image, mask = parsing(model_image, mask_components) |
|
|
|
mask = mask[:, :, :, 0] |
|
|
|
alpha = 1.0 - mask |
|
|
|
output_image, = JoinImageWithAlpha().join_image_with_alpha(image, alpha) |
|
|
|
elif method == "human_parts (deeplabv3p)": |
|
from .human_parsing.run_parsing import HumanParts |
|
onnx_path = os.path.join(folder_paths.models_dir, 'onnx') |
|
human_parts_path = os.path.join(onnx_path, 'human-parts') |
|
model_path = get_local_filepath(HUMANPARSING_MODELS['human-parts']['model_url'], human_parts_path) |
|
parsing = HumanParts(model_path=model_path) |
|
|
|
mask, = parsing(image, mask_components) |
|
|
|
alpha = 1.0 - mask |
|
|
|
output_image, = JoinImageWithAlpha().join_image_with_alpha(image, alpha) |
|
|
|
|
|
|
|
bbox = [[0, 0, 0, 0]] |
|
if crop_multi > 0.0: |
|
output_image, mask, bbox = imageCropFromMask().crop(output_image, mask, crop_multi, crop_multi, 1.0) |
|
|
|
return (output_image, mask, bbox) |
|
|
|
class imageCropFromMask: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
"mask": ("MASK",), |
|
"image_crop_multi": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}), |
|
"mask_crop_multi": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}), |
|
"bbox_smooth_alpha": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK", "BBOX",) |
|
RETURN_NAMES = ("crop_image", "crop_mask", "bbox",) |
|
FUNCTION = "crop" |
|
CATEGORY = "EasyUse/Image" |
|
|
|
def smooth_bbox_size(self, prev_bbox_size, curr_bbox_size, alpha): |
|
if alpha == 0: |
|
return prev_bbox_size |
|
return round(alpha * curr_bbox_size + (1 - alpha) * prev_bbox_size) |
|
|
|
def smooth_center(self, prev_center, curr_center, alpha=0.5): |
|
if alpha == 0: |
|
return prev_center |
|
return ( |
|
round(alpha * curr_center[0] + (1 - alpha) * prev_center[0]), |
|
round(alpha * curr_center[1] + (1 - alpha) * prev_center[1]) |
|
) |
|
|
|
def image2mask(self, image): |
|
return image[:, :, :, 0] |
|
|
|
def mask2image(self, mask): |
|
return mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3) |
|
|
|
def cropimage(self, original_images, masks, crop_size_mult, bbox_smooth_alpha): |
|
|
|
bounding_boxes = [] |
|
cropped_images = [] |
|
|
|
self.max_bbox_width = 0 |
|
self.max_bbox_height = 0 |
|
|
|
|
|
curr_max_bbox_width = 0 |
|
curr_max_bbox_height = 0 |
|
for mask in masks: |
|
_mask = tensor2pil(mask) |
|
non_zero_indices = np.nonzero(np.array(_mask)) |
|
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1]) |
|
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0]) |
|
width = max_x - min_x |
|
height = max_y - min_y |
|
curr_max_bbox_width = max(curr_max_bbox_width, width) |
|
curr_max_bbox_height = max(curr_max_bbox_height, height) |
|
|
|
|
|
self.max_bbox_width = self.smooth_bbox_size(self.max_bbox_width, curr_max_bbox_width, bbox_smooth_alpha) |
|
self.max_bbox_height = self.smooth_bbox_size(self.max_bbox_height, curr_max_bbox_height, bbox_smooth_alpha) |
|
|
|
|
|
self.max_bbox_width = round(self.max_bbox_width * crop_size_mult) |
|
self.max_bbox_height = round(self.max_bbox_height * crop_size_mult) |
|
bbox_aspect_ratio = self.max_bbox_width / self.max_bbox_height |
|
|
|
|
|
for i, (mask, img) in enumerate(zip(masks, original_images)): |
|
_mask = tensor2pil(mask) |
|
non_zero_indices = np.nonzero(np.array(_mask)) |
|
min_x, max_x = np.min(non_zero_indices[1]), np.max(non_zero_indices[1]) |
|
min_y, max_y = np.min(non_zero_indices[0]), np.max(non_zero_indices[0]) |
|
|
|
|
|
center_x = np.mean(non_zero_indices[1]) |
|
center_y = np.mean(non_zero_indices[0]) |
|
curr_center = (round(center_x), round(center_y)) |
|
|
|
|
|
if not hasattr(self, 'prev_center'): |
|
self.prev_center = curr_center |
|
|
|
|
|
if i > 0: |
|
center = self.smooth_center(self.prev_center, curr_center, bbox_smooth_alpha) |
|
else: |
|
center = curr_center |
|
|
|
|
|
self.prev_center = center |
|
|
|
|
|
half_box_width = round(self.max_bbox_width / 2) |
|
half_box_height = round(self.max_bbox_height / 2) |
|
min_x = max(0, center[0] - half_box_width) |
|
max_x = min(img.shape[1], center[0] + half_box_width) |
|
min_y = max(0, center[1] - half_box_height) |
|
max_y = min(img.shape[0], center[1] + half_box_height) |
|
|
|
|
|
bounding_boxes.append((min_x, min_y, max_x - min_x, max_y - min_y)) |
|
|
|
|
|
cropped_img = img[min_y:max_y, min_x:max_x, :] |
|
|
|
|
|
new_height = min(cropped_img.shape[0], self.max_bbox_height) |
|
new_width = round(new_height * bbox_aspect_ratio) |
|
|
|
|
|
resize_transform = Resize((new_height, new_width)) |
|
resized_img = resize_transform(cropped_img.permute(2, 0, 1)) |
|
|
|
|
|
crop_transform = CenterCrop((self.max_bbox_height, self.max_bbox_width)) |
|
cropped_resized_img = crop_transform(resized_img) |
|
|
|
cropped_images.append(cropped_resized_img.permute(1, 2, 0)) |
|
|
|
return cropped_images, bounding_boxes |
|
|
|
def crop(self, image, mask, image_crop_multi, mask_crop_multi, bbox_smooth_alpha): |
|
cropped_images, bounding_boxes = self.cropimage(image, mask, image_crop_multi, bbox_smooth_alpha) |
|
cropped_mask_image, _ = self.cropimage(self.mask2image(mask), mask, mask_crop_multi, bbox_smooth_alpha) |
|
|
|
cropped_image_out = torch.stack(cropped_images, dim=0) |
|
cropped_mask_out = torch.stack(cropped_mask_image, dim=0) |
|
|
|
return (cropped_image_out, cropped_mask_out[:, :, :, 0], bounding_boxes) |
|
|
|
|
|
class imageUncropFromBBOX: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"original_image": ("IMAGE",), |
|
"crop_image": ("IMAGE",), |
|
"bbox": ("BBOX",), |
|
"border_blending": ("FLOAT", {"default": 0.25, "min": 0.0, "max": 1.0, "step": 0.01},), |
|
"use_square_mask": ("BOOLEAN", {"default": True}), |
|
}, |
|
"optional":{ |
|
"optional_mask": ("MASK",) |
|
} |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("image",) |
|
FUNCTION = "uncrop" |
|
CATEGORY = "EasyUse/Image" |
|
|
|
def bbox_check(self, bbox, target_size=None): |
|
if not target_size: |
|
return bbox |
|
|
|
new_bbox = ( |
|
bbox[0], |
|
bbox[1], |
|
min(target_size[0] - bbox[0], bbox[2]), |
|
min(target_size[1] - bbox[1], bbox[3]), |
|
) |
|
return new_bbox |
|
|
|
def bbox_to_region(self, bbox, target_size=None): |
|
bbox = self.bbox_check(bbox, target_size) |
|
return (bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]) |
|
|
|
def uncrop(self, original_image, crop_image, bbox, border_blending, use_square_mask, optional_mask=None): |
|
def inset_border(image, border_width=20, border_color=(0)): |
|
width, height = image.size |
|
bordered_image = Image.new(image.mode, (width, height), border_color) |
|
bordered_image.paste(image, (0, 0)) |
|
draw = ImageDraw.Draw(bordered_image) |
|
draw.rectangle((0, 0, width - 1, height - 1), outline=border_color, width=border_width) |
|
return bordered_image |
|
|
|
if len(original_image) != len(crop_image): |
|
raise ValueError( |
|
f"The number of original_images ({len(original_image)}) and cropped_images ({len(crop_image)}) should be the same") |
|
|
|
|
|
if len(bbox) > len(original_image): |
|
print(f"Warning: Dropping excess bounding boxes. Expected {len(original_image)}, but got {len(bbox)}") |
|
bbox = bbox[:len(original_image)] |
|
elif len(bbox) < len(original_image): |
|
raise ValueError("There should be at least as many bboxes as there are original and cropped images") |
|
|
|
|
|
out_images = [] |
|
|
|
for i in range(len(original_image)): |
|
img = tensor2pil(original_image[i]) |
|
crop = tensor2pil(crop_image[i]) |
|
_bbox = bbox[i] |
|
|
|
bb_x, bb_y, bb_width, bb_height = _bbox |
|
paste_region = self.bbox_to_region((bb_x, bb_y, bb_width, bb_height), img.size) |
|
|
|
|
|
crop = crop.resize((round(paste_region[2] - paste_region[0]), round(paste_region[3] - paste_region[1]))) |
|
crop_img = crop.convert("RGB") |
|
|
|
|
|
if border_blending > 1.0: |
|
border_blending = 1.0 |
|
elif border_blending < 0.0: |
|
border_blending = 0.0 |
|
|
|
blend_ratio = (max(crop_img.size) / 2) * float(border_blending) |
|
blend = img.convert("RGBA") |
|
|
|
if use_square_mask: |
|
mask = Image.new("L", img.size, 0) |
|
mask_block = Image.new("L", (paste_region[2] - paste_region[0], paste_region[3] - paste_region[1]), 255) |
|
mask_block = inset_border(mask_block, round(blend_ratio / 2), (0)) |
|
mask.paste(mask_block, paste_region) |
|
else: |
|
if optional_mask is None: |
|
raise ValueError("optional_mask is required when use_square_mask is False") |
|
original_mask = tensor2pil(optional_mask) |
|
original_mask = original_mask.resize((paste_region[2] - paste_region[0], paste_region[3] - paste_region[1])) |
|
mask = Image.new("L", img.size, 0) |
|
mask.paste(original_mask, paste_region) |
|
|
|
mask = mask.filter(ImageFilter.BoxBlur(radius=blend_ratio / 4)) |
|
mask = mask.filter(ImageFilter.GaussianBlur(radius=blend_ratio / 4)) |
|
|
|
blend.paste(crop_img, paste_region) |
|
blend.putalpha(mask) |
|
|
|
img = Image.alpha_composite(img.convert("RGBA"), blend) |
|
out_images.append(img.convert("RGB")) |
|
|
|
output_images = torch.cat([pil2tensor(img) for img in out_images], dim=0) |
|
return (output_images,) |
|
|
|
|
|
|
|
import cv2 |
|
import base64 |
|
class loadImageBase64: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"base64_data": ("STRING", {"default": ""}), |
|
"image_output": (["Hide", "Preview", "Save", "Hide/Save"], {"default": "Preview"}), |
|
"save_prefix": ("STRING", {"default": "ComfyUI"}), |
|
}, |
|
"optional": { |
|
|
|
}, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE", "MASK") |
|
OUTPUT_NODE = True |
|
FUNCTION = "load_image" |
|
CATEGORY = "EasyUse/Image/LoadImage" |
|
|
|
def convert_color(self, image,): |
|
if len(image.shape) > 2 and image.shape[2] >= 4: |
|
return cv2.cvtColor(image, cv2.COLOR_BGRA2RGB) |
|
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) |
|
|
|
def load_image(self, base64_data, image_output, save_prefix, prompt=None, extra_pnginfo=None): |
|
nparr = np.frombuffer(base64.b64decode(base64_data), np.uint8) |
|
|
|
result = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED) |
|
channels = cv2.split(result) |
|
if len(channels) > 3: |
|
mask = channels[3].astype(np.float32) / 255.0 |
|
mask = torch.from_numpy(mask) |
|
else: |
|
mask = torch.ones(channels[0].shape, dtype=torch.float32, device="cpu") |
|
|
|
result = self.convert_color(result) |
|
result = result.astype(np.float32) / 255.0 |
|
new_images = torch.from_numpy(result)[None,] |
|
|
|
results = easySave(new_images, save_prefix, image_output, None, None) |
|
mask = mask.unsqueeze(0) |
|
|
|
if image_output in ("Hide", "Hide/Save"): |
|
return {"ui": {}, |
|
"result": (new_images, mask)} |
|
|
|
return {"ui": {"images": results}, |
|
"result": (new_images, mask)} |
|
|
|
class imageToBase64: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"image": ("IMAGE",), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = ("STRING",) |
|
FUNCTION = "to_base64" |
|
CATEGORY = "EasyUse/Image" |
|
OUTPUT_NODE = True |
|
|
|
def to_base64(self, image, ): |
|
import base64 |
|
from io import BytesIO |
|
|
|
|
|
pil_image = tensor2pil(image) |
|
|
|
buffered = BytesIO() |
|
pil_image.save(buffered, format="JPEG") |
|
image_bytes = buffered.getvalue() |
|
|
|
base64_str = base64.b64encode(image_bytes).decode("utf-8") |
|
return {"result": (base64_str,)} |
|
|
|
class removeLocalImage: |
|
|
|
def __init__(self): |
|
self.hasFile = False |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"any": (any_type,), |
|
"file_name": ("STRING",{"default":""}), |
|
}, |
|
} |
|
|
|
RETURN_TYPES = () |
|
OUTPUT_NODE = True |
|
FUNCTION = "remove" |
|
CATEGORY = "EasyUse/Image" |
|
|
|
|
|
|
|
def remove(self, any, file_name): |
|
self.hasFile = False |
|
def listdir(path, dir_name=''): |
|
for file in os.listdir(path): |
|
file_path = os.path.join(path, file) |
|
if os.path.isdir(file_path): |
|
dir_name = os.path.basename(file_path) |
|
listdir(file_path, dir_name) |
|
else: |
|
file = os.path.join(dir_name, file) |
|
name_without_extension, file_extension = os.path.splitext(file) |
|
if name_without_extension == file_name or file == file_name: |
|
os.remove(os.path.join(folder_paths.input_directory, file)) |
|
self.hasFile = True |
|
break |
|
|
|
listdir(folder_paths.input_directory, '') |
|
|
|
if self.hasFile: |
|
PromptServer.instance.send_sync("easyuse-toast", {"content": "Removed SuccessFully", "type":'success'}) |
|
else: |
|
PromptServer.instance.send_sync("easyuse-toast", {"content": "Removed Failed", "type": 'error'}) |
|
return () |
|
|
|
try: |
|
from comfy_execution.graph_utils import GraphBuilder, is_link |
|
except: |
|
GraphBuilder = None |
|
class loadImagesForLoop: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"directory": ("STRING", {"default": ""}), |
|
}, |
|
"optional": { |
|
"start_index": ("INT", {"default": 0, "min": 0, "step": 1}), |
|
"limit": ("INT", {"default":-1, "min":-1, "max": 10000}), |
|
"initial_value1": (any_type,), |
|
"initial_value2": (any_type,), |
|
}, |
|
"hidden": { |
|
"initial_value0": (any_type,), |
|
"prompt": "PROMPT", |
|
"extra_pnginfo": "EXTRA_PNGINFO", |
|
"unique_id": "UNIQUE_ID" |
|
} |
|
} |
|
|
|
RETURN_TYPES = ByPassTypeTuple(tuple(["FLOW_CONTROL", "INT", "IMAGE", "MASK", "STRING", any_type, any_type])) |
|
RETURN_NAMES = ByPassTypeTuple(tuple(["flow", "index", "image", "mask", "name", "value1", "value2"])) |
|
|
|
FUNCTION = "load_images" |
|
|
|
CATEGORY = "image" |
|
|
|
def load_images(self, directory: str, start_index: int = 0, limit: int =-1, prompt=None, extra_pnginfo=None, unique_id=None, **kwargs): |
|
if not os.path.isdir(directory): |
|
raise FileNotFoundError(f"Directory '{directory}' cannot be found.") |
|
dir_files = os.listdir(directory) |
|
if len(dir_files) == 0: |
|
raise FileNotFoundError(f"No files in directory '{directory}'.") |
|
|
|
|
|
valid_extensions = ['.jpg', '.jpeg', '.png', '.webp'] |
|
dir_files = [f for f in dir_files if any(f.lower().endswith(ext) for ext in valid_extensions)] |
|
|
|
dir_files = sorted(dir_files) |
|
dir_files = [os.path.join(directory, x) for x in dir_files] |
|
|
|
graph = GraphBuilder() |
|
index = 0 |
|
|
|
|
|
if "initial_value0" in kwargs: |
|
index = kwargs["initial_value0"] |
|
|
|
image_path = dir_files[start_index+index] |
|
|
|
name = os.path.splitext(os.path.basename(image_path))[0] |
|
|
|
i = Image.open(image_path) |
|
i = ImageOps.exif_transpose(i) |
|
image = i.convert("RGB") |
|
image = np.array(image).astype(np.float32) / 255.0 |
|
image = torch.from_numpy(image)[None,] |
|
|
|
if 'A' in i.getbands(): |
|
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0 |
|
mask = 1. - torch.from_numpy(mask) |
|
else: |
|
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu") |
|
|
|
while_open = graph.node("easy whileLoopStart", condition=True, initial_value0=index, initial_value1=kwargs.get('initial_value1',None), initial_value2=kwargs.get('initial_value2',None)) |
|
outputs = [kwargs.get('initial_value1',None), kwargs.get('initial_value2',None)] |
|
|
|
return { |
|
"result": tuple(["stub", index, image, mask, name] + outputs), |
|
"expand": graph.finalize(), |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class saveImageLazy(): |
|
def __init__(self): |
|
self.output_dir = folder_paths.get_output_directory() |
|
self.type = "output" |
|
self.compress_level = 4 |
|
|
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return {"required": |
|
{"images": ("IMAGE",), |
|
"filename_prefix": ("STRING", {"default": "ComfyUI"}), |
|
"save_metadata": ("BOOLEAN", {"default": True}), |
|
}, |
|
"optional":{}, |
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, |
|
} |
|
|
|
RETURN_TYPES = ("IMAGE",) |
|
RETURN_NAMES = ("images",) |
|
OUTPUT_NODE = False |
|
FUNCTION = "save" |
|
CATEGORY = "EasyUse/Image" |
|
|
|
def save(self, images, filename_prefix, save_metadata, prompt=None, extra_pnginfo=None): |
|
extension = 'png' |
|
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path( |
|
filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0]) |
|
|
|
results = list() |
|
for (batch_number, image) in enumerate(images): |
|
i = 255. * image.cpu().numpy() |
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8)) |
|
metadata = None |
|
|
|
filename_with_batch_num = filename.replace( |
|
"%batch_num%", str(batch_number)) |
|
|
|
counter = 1 |
|
|
|
if os.path.exists(full_output_folder) and os.listdir(full_output_folder): |
|
filtered_filenames = list(filter( |
|
lambda filename: filename.startswith( |
|
filename_with_batch_num + "_") |
|
and filename[len(filename_with_batch_num) + 1:-4].isdigit(), |
|
os.listdir(full_output_folder) |
|
)) |
|
|
|
if filtered_filenames: |
|
max_counter = max( |
|
int(filename[len(filename_with_batch_num) + 1:-4]) |
|
for filename in filtered_filenames |
|
) |
|
counter = max_counter + 1 |
|
|
|
file = f"{filename_with_batch_num}_{counter:05}.{extension}" |
|
|
|
save_path = os.path.join(full_output_folder, file) |
|
|
|
if save_metadata: |
|
metadata = PngInfo() |
|
if prompt is not None: |
|
metadata.add_text("prompt", json.dumps(prompt)) |
|
if extra_pnginfo is not None: |
|
for x in extra_pnginfo: |
|
metadata.add_text( |
|
x, json.dumps(extra_pnginfo[x])) |
|
|
|
img.save(save_path, pnginfo=metadata) |
|
|
|
results.append({ |
|
"filename": file, |
|
"subfolder": subfolder, |
|
"type": self.type |
|
}) |
|
|
|
return {"ui": {"images": results} , "result": (images,)} |
|
|
|
NODE_CLASS_MAPPINGS = { |
|
"easy imageInsetCrop": imageInsetCrop, |
|
"easy imageCount": imageCount, |
|
"easy imageSize": imageSize, |
|
"easy imageSizeBySide": imageSizeBySide, |
|
"easy imageSizeByLongerSide": imageSizeByLongerSide, |
|
"easy imagePixelPerfect": imagePixelPerfect, |
|
"easy imageScaleDown": imageScaleDown, |
|
"easy imageScaleDownBy": imageScaleDownBy, |
|
"easy imageScaleDownToSize": imageScaleDownToSize, |
|
"easy imageScaleToNormPixels": imageScaleToNormPixels, |
|
"easy imageRatio": imageRatio, |
|
"easy imageConcat": imageConcat, |
|
"easy imageListToImageBatch": imageListToImageBatch, |
|
"easy imageBatchToImageList": imageBatchToImageList, |
|
"easy imageSplitList": imageSplitList, |
|
"easy imageSplitGrid": imageSplitGrid, |
|
"easy imagesSplitImage": imagesSplitImage, |
|
"easy imageSplitTiles": imageSplitTiles, |
|
"easy imageTilesFromBatch": imageTilesFromBatch, |
|
"easy imageCropFromMask": imageCropFromMask, |
|
"easy imageUncropFromBBOX": imageUncropFromBBOX, |
|
"easy imageSave": imageSaveSimple, |
|
"easy imageRemBg": imageRemBg, |
|
"easy imageChooser": imageChooser, |
|
"easy imageColorMatch": imageColorMatch, |
|
"easy imageDetailTransfer": imageDetailTransfer, |
|
"easy imageInterrogator": imageInterrogator, |
|
"easy loadImagesForLoop": loadImagesForLoop, |
|
"easy loadImageBase64": loadImageBase64, |
|
"easy imageToBase64": imageToBase64, |
|
"easy joinImageBatch": JoinImageBatch, |
|
"easy humanSegmentation": humanSegmentation, |
|
"easy removeLocalImage": removeLocalImage, |
|
"easy saveImageLazy": saveImageLazy, |
|
} |
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = { |
|
"easy imageInsetCrop": "ImageInsetCrop", |
|
"easy imageCount": "ImageCount", |
|
"easy imageSize": "ImageSize", |
|
"easy imageSizeBySide": "ImageSize (Side)", |
|
"easy imageSizeByLongerSide": "ImageSize (LongerSide)", |
|
"easy imagePixelPerfect": "ImagePixelPerfect", |
|
"easy imageScaleDown": "Image Scale Down", |
|
"easy imageScaleDownBy": "Image Scale Down By", |
|
"easy imageScaleDownToSize": "Image Scale Down To Size", |
|
"easy imageScaleToNormPixels": "ImageScaleToNormPixels", |
|
"easy imageRatio": "ImageRatio", |
|
"easy imageHSVMask": "ImageHSVMask", |
|
"easy imageConcat": "imageConcat", |
|
"easy imageListToImageBatch": "Image List To Image Batch", |
|
"easy imageBatchToImageList": "Image Batch To Image List", |
|
"easy imageSplitList": "imageSplitList", |
|
"easy imageSplitGrid": "imageSplitGrid", |
|
"easy imageSplitTiles": "imageSplitTiles", |
|
"easy imageTilesFromBatch": "imageTilesFromBatch", |
|
"easy imagesSplitImage": "imagesSplitImage", |
|
"easy imageCropFromMask": "imageCropFromMask", |
|
"easy imageUncropFromBBOX": "imageUncropFromBBOX", |
|
"easy imageSave": "Save Image (Simple)", |
|
"easy imageRemBg": "Image Remove Bg", |
|
"easy imageChooser": "Image Chooser", |
|
"easy imageColorMatch": "Image Color Match", |
|
"easy imageDetailTransfer": "Image Detail Transfer", |
|
"easy imageInterrogator": "Image To Prompt", |
|
"easy joinImageBatch": "JoinImageBatch", |
|
"easy loadImageBase64": "Load Image (Base64)", |
|
"easy loadImagesForLoop": "Load Images For Loop", |
|
"easy imageToBase64": "Image To Base64", |
|
"easy humanSegmentation": "Human Segmentation", |
|
"easy removeLocalImage": "Remove Local Image", |
|
"easy saveImageLazy": "Save Image (Lazy)", |
|
} |