|
from .utils import find_wildcards_seed, find_nearest_steps, is_linked_styles_selector |
|
from .log import log_node_warn |
|
from .translate import zh_to_en, has_chinese |
|
from .wildcards import process_with_loras |
|
from .adv_encode import advanced_encode |
|
|
|
from nodes import ConditioningConcat, ConditioningCombine, ConditioningAverage, ConditioningSetTimestepRange, CLIPTextEncode |
|
|
|
def prompt_to_cond(type, model, clip, clip_skip, lora_stack, text, prompt_token_normalization, prompt_weight_interpretation, a1111_prompt_style ,my_unique_id, prompt, easyCache, can_load_lora=True, steps=None, model_type=None): |
|
styles_selector = is_linked_styles_selector(prompt, my_unique_id, type) |
|
title = "Positive encoding" if type == 'positive' else "Negative encoding" |
|
|
|
|
|
if model_type not in ['hydit'] and text is not None and has_chinese(text): |
|
text = zh_to_en([text])[0] |
|
|
|
if model_type in ['hydit', 'flux', 'mochi']: |
|
log_node_warn(title + "...") |
|
embeddings_final, = CLIPTextEncode().encode(clip, text) if text is not None else (None,) |
|
|
|
return (embeddings_final, "", model, clip) |
|
|
|
log_node_warn(title + "...") |
|
|
|
positive_seed = find_wildcards_seed(my_unique_id, text, prompt) |
|
model, clip, text, cond_decode, show_prompt, pipe_lora_stack = process_with_loras( |
|
text, model, clip, type, positive_seed, can_load_lora, lora_stack, easyCache) |
|
wildcard_prompt = cond_decode if show_prompt or styles_selector else "" |
|
|
|
clipped = clip.clone() |
|
|
|
if not hasattr(clip.cond_stage_model, 't5xxl'): |
|
if clip_skip != 0: |
|
clipped.clip_layer(clip_skip) |
|
|
|
steps = steps if steps is not None else find_nearest_steps(my_unique_id, prompt) |
|
return (advanced_encode(clipped, text, prompt_token_normalization, |
|
prompt_weight_interpretation, w_max=1.0, |
|
apply_to_pooled='enable', |
|
a1111_prompt_style=a1111_prompt_style, steps=steps) if text is not None else None, wildcard_prompt, model, clipped) |
|
|
|
def set_cond(old_cond, new_cond, mode, average_strength, old_cond_start, old_cond_end, new_cond_start, new_cond_end): |
|
if not old_cond: |
|
return new_cond |
|
else: |
|
if mode == "replace": |
|
return new_cond |
|
elif mode == "concat": |
|
return ConditioningConcat().concat(new_cond, old_cond)[0] |
|
elif mode == "combine": |
|
return ConditioningCombine().combine(old_cond, new_cond)[0] |
|
elif mode == 'average': |
|
return ConditioningAverage().addWeighted(new_cond, old_cond, average_strength)[0] |
|
elif mode == 'timestep': |
|
cond_1 = ConditioningSetTimestepRange().set_range(old_cond, old_cond_start, old_cond_end)[0] |
|
cond_2 = ConditioningSetTimestepRange().set_range(new_cond, new_cond_start, new_cond_end)[0] |
|
return ConditioningCombine().combine(cond_1, cond_2)[0] |