|
import math |
|
import torch |
|
import comfy |
|
|
|
|
|
def extra_options_to_module_prefix(extra_options): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
block = extra_options["block"] |
|
block_index = extra_options["block_index"] |
|
if block[0] == "input": |
|
module_pfx = f"lllite_unet_input_blocks_{block[1]}_1_transformer_blocks_{block_index}" |
|
elif block[0] == "middle": |
|
module_pfx = f"lllite_unet_middle_block_1_transformer_blocks_{block_index}" |
|
elif block[0] == "output": |
|
module_pfx = f"lllite_unet_output_blocks_{block[1]}_1_transformer_blocks_{block_index}" |
|
else: |
|
raise Exception("invalid block name") |
|
return module_pfx |
|
|
|
|
|
def load_control_net_lllite_patch(path, cond_image, multiplier, num_steps, start_percent, end_percent): |
|
|
|
start_step = math.floor(num_steps * start_percent * 0.01) if start_percent > 0 else 0 |
|
end_step = math.floor(num_steps * end_percent * 0.01) if end_percent > 0 else num_steps |
|
|
|
|
|
ctrl_sd = comfy.utils.load_torch_file(path, safe_load=True) |
|
|
|
|
|
module_weights = {} |
|
for key, value in ctrl_sd.items(): |
|
fragments = key.split(".") |
|
module_name = fragments[0] |
|
weight_name = ".".join(fragments[1:]) |
|
|
|
if module_name not in module_weights: |
|
module_weights[module_name] = {} |
|
module_weights[module_name][weight_name] = value |
|
|
|
|
|
modules = {} |
|
for module_name, weights in module_weights.items(): |
|
|
|
if "conditioning1.4.weight" in weights: |
|
depth = 3 |
|
elif weights["conditioning1.2.weight"].shape[-1] == 4: |
|
depth = 2 |
|
else: |
|
depth = 1 |
|
|
|
module = LLLiteModule( |
|
name=module_name, |
|
is_conv2d=weights["down.0.weight"].ndim == 4, |
|
in_dim=weights["down.0.weight"].shape[1], |
|
depth=depth, |
|
cond_emb_dim=weights["conditioning1.0.weight"].shape[0] * 2, |
|
mlp_dim=weights["down.0.weight"].shape[0], |
|
multiplier=multiplier, |
|
num_steps=num_steps, |
|
start_step=start_step, |
|
end_step=end_step, |
|
) |
|
info = module.load_state_dict(weights) |
|
modules[module_name] = module |
|
if len(modules) == 1: |
|
module.is_first = True |
|
|
|
print(f"loaded {path} successfully, {len(modules)} modules") |
|
|
|
|
|
cond_image = cond_image.permute(0, 3, 1, 2) |
|
cond_image = cond_image * 2.0 - 1.0 |
|
|
|
for module in modules.values(): |
|
module.set_cond_image(cond_image) |
|
|
|
class control_net_lllite_patch: |
|
def __init__(self, modules): |
|
self.modules = modules |
|
|
|
def __call__(self, q, k, v, extra_options): |
|
module_pfx = extra_options_to_module_prefix(extra_options) |
|
|
|
is_attn1 = q.shape[-1] == k.shape[-1] |
|
if is_attn1: |
|
module_pfx = module_pfx + "_attn1" |
|
else: |
|
module_pfx = module_pfx + "_attn2" |
|
|
|
module_pfx_to_q = module_pfx + "_to_q" |
|
module_pfx_to_k = module_pfx + "_to_k" |
|
module_pfx_to_v = module_pfx + "_to_v" |
|
|
|
if module_pfx_to_q in self.modules: |
|
q = q + self.modules[module_pfx_to_q](q) |
|
if module_pfx_to_k in self.modules: |
|
k = k + self.modules[module_pfx_to_k](k) |
|
if module_pfx_to_v in self.modules: |
|
v = v + self.modules[module_pfx_to_v](v) |
|
|
|
return q, k, v |
|
|
|
def to(self, device): |
|
for d in self.modules.keys(): |
|
self.modules[d] = self.modules[d].to(device) |
|
return self |
|
|
|
return control_net_lllite_patch(modules) |
|
|
|
class LLLiteModule(torch.nn.Module): |
|
def __init__( |
|
self, |
|
name: str, |
|
is_conv2d: bool, |
|
in_dim: int, |
|
depth: int, |
|
cond_emb_dim: int, |
|
mlp_dim: int, |
|
multiplier: int, |
|
num_steps: int, |
|
start_step: int, |
|
end_step: int, |
|
): |
|
super().__init__() |
|
self.name = name |
|
self.is_conv2d = is_conv2d |
|
self.multiplier = multiplier |
|
self.num_steps = num_steps |
|
self.start_step = start_step |
|
self.end_step = end_step |
|
self.is_first = False |
|
|
|
modules = [] |
|
modules.append(torch.nn.Conv2d(3, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0)) |
|
if depth == 1: |
|
modules.append(torch.nn.ReLU(inplace=True)) |
|
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0)) |
|
elif depth == 2: |
|
modules.append(torch.nn.ReLU(inplace=True)) |
|
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=4, stride=4, padding=0)) |
|
elif depth == 3: |
|
|
|
modules.append(torch.nn.ReLU(inplace=True)) |
|
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0)) |
|
modules.append(torch.nn.ReLU(inplace=True)) |
|
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0)) |
|
|
|
self.conditioning1 = torch.nn.Sequential(*modules) |
|
|
|
if self.is_conv2d: |
|
self.down = torch.nn.Sequential( |
|
torch.nn.Conv2d(in_dim, mlp_dim, kernel_size=1, stride=1, padding=0), |
|
torch.nn.ReLU(inplace=True), |
|
) |
|
self.mid = torch.nn.Sequential( |
|
torch.nn.Conv2d(mlp_dim + cond_emb_dim, mlp_dim, kernel_size=1, stride=1, padding=0), |
|
torch.nn.ReLU(inplace=True), |
|
) |
|
self.up = torch.nn.Sequential( |
|
torch.nn.Conv2d(mlp_dim, in_dim, kernel_size=1, stride=1, padding=0), |
|
) |
|
else: |
|
self.down = torch.nn.Sequential( |
|
torch.nn.Linear(in_dim, mlp_dim), |
|
torch.nn.ReLU(inplace=True), |
|
) |
|
self.mid = torch.nn.Sequential( |
|
torch.nn.Linear(mlp_dim + cond_emb_dim, mlp_dim), |
|
torch.nn.ReLU(inplace=True), |
|
) |
|
self.up = torch.nn.Sequential( |
|
torch.nn.Linear(mlp_dim, in_dim), |
|
) |
|
|
|
self.depth = depth |
|
self.cond_image = None |
|
self.cond_emb = None |
|
self.current_step = 0 |
|
|
|
|
|
def set_cond_image(self, cond_image): |
|
|
|
self.cond_image = cond_image |
|
self.cond_emb = None |
|
self.current_step = 0 |
|
|
|
def forward(self, x): |
|
if self.num_steps > 0: |
|
if self.current_step < self.start_step: |
|
self.current_step += 1 |
|
return torch.zeros_like(x) |
|
elif self.current_step >= self.end_step: |
|
if self.is_first and self.current_step == self.end_step: |
|
print(f"end LLLite: step {self.current_step}") |
|
self.current_step += 1 |
|
if self.current_step >= self.num_steps: |
|
self.current_step = 0 |
|
return torch.zeros_like(x) |
|
else: |
|
if self.is_first and self.current_step == self.start_step: |
|
print(f"start LLLite: step {self.current_step}") |
|
self.current_step += 1 |
|
if self.current_step >= self.num_steps: |
|
self.current_step = 0 |
|
|
|
if self.cond_emb is None: |
|
|
|
cx = self.conditioning1(self.cond_image.to(x.device, dtype=x.dtype)) |
|
if not self.is_conv2d: |
|
|
|
n, c, h, w = cx.shape |
|
cx = cx.view(n, c, h * w).permute(0, 2, 1) |
|
self.cond_emb = cx |
|
|
|
cx = self.cond_emb |
|
|
|
|
|
|
|
if x.shape[0] != cx.shape[0]: |
|
if self.is_conv2d: |
|
cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1, 1) |
|
else: |
|
|
|
cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1) |
|
|
|
cx = torch.cat([cx, self.down(x)], dim=1 if self.is_conv2d else 2) |
|
cx = self.mid(cx) |
|
cx = self.up(cx) |
|
return cx * self.multiplier |