jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
import math
import torch
import comfy
def extra_options_to_module_prefix(extra_options):
# extra_options = {'transformer_index': 2, 'block_index': 8, 'original_shape': [2, 4, 128, 128], 'block': ('input', 7), 'n_heads': 20, 'dim_head': 64}
# block is: [('input', 4), ('input', 5), ('input', 7), ('input', 8), ('middle', 0),
# ('output', 0), ('output', 1), ('output', 2), ('output', 3), ('output', 4), ('output', 5)]
# transformer_index is: [0, 1, 2, 3, 4, 5, 6, 7, 8], for each block
# block_index is: 0-1 or 0-9, depends on the block
# input 7 and 8, middle has 10 blocks
# make module name from extra_options
block = extra_options["block"]
block_index = extra_options["block_index"]
if block[0] == "input":
module_pfx = f"lllite_unet_input_blocks_{block[1]}_1_transformer_blocks_{block_index}"
elif block[0] == "middle":
module_pfx = f"lllite_unet_middle_block_1_transformer_blocks_{block_index}"
elif block[0] == "output":
module_pfx = f"lllite_unet_output_blocks_{block[1]}_1_transformer_blocks_{block_index}"
else:
raise Exception("invalid block name")
return module_pfx
def load_control_net_lllite_patch(path, cond_image, multiplier, num_steps, start_percent, end_percent):
# calculate start and end step
start_step = math.floor(num_steps * start_percent * 0.01) if start_percent > 0 else 0
end_step = math.floor(num_steps * end_percent * 0.01) if end_percent > 0 else num_steps
# load weights
ctrl_sd = comfy.utils.load_torch_file(path, safe_load=True)
# split each weights for each module
module_weights = {}
for key, value in ctrl_sd.items():
fragments = key.split(".")
module_name = fragments[0]
weight_name = ".".join(fragments[1:])
if module_name not in module_weights:
module_weights[module_name] = {}
module_weights[module_name][weight_name] = value
# load each module
modules = {}
for module_name, weights in module_weights.items():
# ここの自動判定を何とかしたい
if "conditioning1.4.weight" in weights:
depth = 3
elif weights["conditioning1.2.weight"].shape[-1] == 4:
depth = 2
else:
depth = 1
module = LLLiteModule(
name=module_name,
is_conv2d=weights["down.0.weight"].ndim == 4,
in_dim=weights["down.0.weight"].shape[1],
depth=depth,
cond_emb_dim=weights["conditioning1.0.weight"].shape[0] * 2,
mlp_dim=weights["down.0.weight"].shape[0],
multiplier=multiplier,
num_steps=num_steps,
start_step=start_step,
end_step=end_step,
)
info = module.load_state_dict(weights)
modules[module_name] = module
if len(modules) == 1:
module.is_first = True
print(f"loaded {path} successfully, {len(modules)} modules")
# cond imageをセットする
cond_image = cond_image.permute(0, 3, 1, 2) # b,h,w,3 -> b,3,h,w
cond_image = cond_image * 2.0 - 1.0 # 0-1 -> -1-+1
for module in modules.values():
module.set_cond_image(cond_image)
class control_net_lllite_patch:
def __init__(self, modules):
self.modules = modules
def __call__(self, q, k, v, extra_options):
module_pfx = extra_options_to_module_prefix(extra_options)
is_attn1 = q.shape[-1] == k.shape[-1] # self attention
if is_attn1:
module_pfx = module_pfx + "_attn1"
else:
module_pfx = module_pfx + "_attn2"
module_pfx_to_q = module_pfx + "_to_q"
module_pfx_to_k = module_pfx + "_to_k"
module_pfx_to_v = module_pfx + "_to_v"
if module_pfx_to_q in self.modules:
q = q + self.modules[module_pfx_to_q](q)
if module_pfx_to_k in self.modules:
k = k + self.modules[module_pfx_to_k](k)
if module_pfx_to_v in self.modules:
v = v + self.modules[module_pfx_to_v](v)
return q, k, v
def to(self, device):
for d in self.modules.keys():
self.modules[d] = self.modules[d].to(device)
return self
return control_net_lllite_patch(modules)
class LLLiteModule(torch.nn.Module):
def __init__(
self,
name: str,
is_conv2d: bool,
in_dim: int,
depth: int,
cond_emb_dim: int,
mlp_dim: int,
multiplier: int,
num_steps: int,
start_step: int,
end_step: int,
):
super().__init__()
self.name = name
self.is_conv2d = is_conv2d
self.multiplier = multiplier
self.num_steps = num_steps
self.start_step = start_step
self.end_step = end_step
self.is_first = False
modules = []
modules.append(torch.nn.Conv2d(3, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0)) # to latent (from VAE) size*2
if depth == 1:
modules.append(torch.nn.ReLU(inplace=True))
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
elif depth == 2:
modules.append(torch.nn.ReLU(inplace=True))
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=4, stride=4, padding=0))
elif depth == 3:
# kernel size 8は大きすぎるので、4にする / kernel size 8 is too large, so set it to 4
modules.append(torch.nn.ReLU(inplace=True))
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim // 2, kernel_size=4, stride=4, padding=0))
modules.append(torch.nn.ReLU(inplace=True))
modules.append(torch.nn.Conv2d(cond_emb_dim // 2, cond_emb_dim, kernel_size=2, stride=2, padding=0))
self.conditioning1 = torch.nn.Sequential(*modules)
if self.is_conv2d:
self.down = torch.nn.Sequential(
torch.nn.Conv2d(in_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
torch.nn.ReLU(inplace=True),
)
self.mid = torch.nn.Sequential(
torch.nn.Conv2d(mlp_dim + cond_emb_dim, mlp_dim, kernel_size=1, stride=1, padding=0),
torch.nn.ReLU(inplace=True),
)
self.up = torch.nn.Sequential(
torch.nn.Conv2d(mlp_dim, in_dim, kernel_size=1, stride=1, padding=0),
)
else:
self.down = torch.nn.Sequential(
torch.nn.Linear(in_dim, mlp_dim),
torch.nn.ReLU(inplace=True),
)
self.mid = torch.nn.Sequential(
torch.nn.Linear(mlp_dim + cond_emb_dim, mlp_dim),
torch.nn.ReLU(inplace=True),
)
self.up = torch.nn.Sequential(
torch.nn.Linear(mlp_dim, in_dim),
)
self.depth = depth
self.cond_image = None
self.cond_emb = None
self.current_step = 0
# @torch.inference_mode()
def set_cond_image(self, cond_image):
# print("set_cond_image", self.name)
self.cond_image = cond_image
self.cond_emb = None
self.current_step = 0
def forward(self, x):
if self.num_steps > 0:
if self.current_step < self.start_step:
self.current_step += 1
return torch.zeros_like(x)
elif self.current_step >= self.end_step:
if self.is_first and self.current_step == self.end_step:
print(f"end LLLite: step {self.current_step}")
self.current_step += 1
if self.current_step >= self.num_steps:
self.current_step = 0 # reset
return torch.zeros_like(x)
else:
if self.is_first and self.current_step == self.start_step:
print(f"start LLLite: step {self.current_step}")
self.current_step += 1
if self.current_step >= self.num_steps:
self.current_step = 0 # reset
if self.cond_emb is None:
# print(f"cond_emb is None, {self.name}")
cx = self.conditioning1(self.cond_image.to(x.device, dtype=x.dtype))
if not self.is_conv2d:
# reshape / b,c,h,w -> b,h*w,c
n, c, h, w = cx.shape
cx = cx.view(n, c, h * w).permute(0, 2, 1)
self.cond_emb = cx
cx = self.cond_emb
# print(f"forward {self.name}, {cx.shape}, {x.shape}")
# uncond/condでxはバッチサイズが2倍
if x.shape[0] != cx.shape[0]:
if self.is_conv2d:
cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1, 1)
else:
# print("x.shape[0] != cx.shape[0]", x.shape[0], cx.shape[0])
cx = cx.repeat(x.shape[0] // cx.shape[0], 1, 1)
cx = torch.cat([cx, self.down(x)], dim=1 if self.is_conv2d else 2)
cx = self.mid(cx)
cx = self.up(cx)
return cx * self.multiplier