jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
import torch
import torch.nn as nn
from comfy.model_patcher import ModelPatcher
from typing import Union
T = torch.Tensor
def exists(val):
return val is not None
def default(val, d):
if exists(val):
return val
return d
class StyleAlignedArgs:
def __init__(self, share_attn: str) -> None:
self.adain_keys = "k" in share_attn
self.adain_values = "v" in share_attn
self.adain_queries = "q" in share_attn
share_attention: bool = True
adain_queries: bool = True
adain_keys: bool = True
adain_values: bool = True
def expand_first(
feat: T,
scale=1.0,
) -> T:
"""
Expand the first element so it has the same shape as the rest of the batch.
"""
b = feat.shape[0]
feat_style = torch.stack((feat[0], feat[b // 2])).unsqueeze(1)
if scale == 1:
feat_style = feat_style.expand(2, b // 2, *feat.shape[1:])
else:
feat_style = feat_style.repeat(1, b // 2, 1, 1, 1)
feat_style = torch.cat([feat_style[:, :1], scale * feat_style[:, 1:]], dim=1)
return feat_style.reshape(*feat.shape)
def concat_first(feat: T, dim=2, scale=1.0) -> T:
"""
concat the the feature and the style feature expanded above
"""
feat_style = expand_first(feat, scale=scale)
return torch.cat((feat, feat_style), dim=dim)
def calc_mean_std(feat, eps: float = 1e-5) -> "tuple[T, T]":
feat_std = (feat.var(dim=-2, keepdims=True) + eps).sqrt()
feat_mean = feat.mean(dim=-2, keepdims=True)
return feat_mean, feat_std
def adain(feat: T) -> T:
feat_mean, feat_std = calc_mean_std(feat)
feat_style_mean = expand_first(feat_mean)
feat_style_std = expand_first(feat_std)
feat = (feat - feat_mean) / feat_std
feat = feat * feat_style_std + feat_style_mean
return feat
class SharedAttentionProcessor:
def __init__(self, args: StyleAlignedArgs, scale: float):
self.args = args
self.scale = scale
def __call__(self, q, k, v, extra_options):
if self.args.adain_queries:
q = adain(q)
if self.args.adain_keys:
k = adain(k)
if self.args.adain_values:
v = adain(v)
if self.args.share_attention:
k = concat_first(k, -2, scale=self.scale)
v = concat_first(v, -2)
return q, k, v
def get_norm_layers(
layer: nn.Module,
norm_layers_: "dict[str, list[Union[nn.GroupNorm, nn.LayerNorm]]]",
share_layer_norm: bool,
share_group_norm: bool,
):
if isinstance(layer, nn.LayerNorm) and share_layer_norm:
norm_layers_["layer"].append(layer)
if isinstance(layer, nn.GroupNorm) and share_group_norm:
norm_layers_["group"].append(layer)
else:
for child_layer in layer.children():
get_norm_layers(
child_layer, norm_layers_, share_layer_norm, share_group_norm
)
def register_norm_forward(
norm_layer: Union[nn.GroupNorm, nn.LayerNorm],
) -> Union[nn.GroupNorm, nn.LayerNorm]:
if not hasattr(norm_layer, "orig_forward"):
setattr(norm_layer, "orig_forward", norm_layer.forward)
orig_forward = norm_layer.orig_forward
def forward_(hidden_states: T) -> T:
n = hidden_states.shape[-2]
hidden_states = concat_first(hidden_states, dim=-2)
hidden_states = orig_forward(hidden_states) # type: ignore
return hidden_states[..., :n, :]
norm_layer.forward = forward_ # type: ignore
return norm_layer
def register_shared_norm(
model: ModelPatcher,
share_group_norm: bool = True,
share_layer_norm: bool = True,
):
norm_layers = {"group": [], "layer": []}
get_norm_layers(model.model, norm_layers, share_layer_norm, share_group_norm)
print(
f"Patching {len(norm_layers['group'])} group norms, {len(norm_layers['layer'])} layer norms."
)
return [register_norm_forward(layer) for layer in norm_layers["group"]] + [
register_norm_forward(layer) for layer in norm_layers["layer"]
]
SHARE_NORM_OPTIONS = ["both", "group", "layer", "disabled"]
SHARE_ATTN_OPTIONS = ["q+k", "q+k+v", "disabled"]
def styleAlignBatch(model, share_norm, share_attn, scale=1.0):
m = model.clone()
share_group_norm = share_norm in ["group", "both"]
share_layer_norm = share_norm in ["layer", "both"]
register_shared_norm(model, share_group_norm, share_layer_norm)
args = StyleAlignedArgs(share_attn)
m.set_model_attn1_patch(SharedAttentionProcessor(args, scale))
return m