jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
import os
import json
import comfy
import folder_paths
from .config import RESOURCES_DIR
from .libs.utils import getMetadata
def load_preset(filename):
path = os.path.join(RESOURCES_DIR, filename)
path = os.path.abspath(path)
preset_list = []
if os.path.exists(path):
with open(path, 'r') as file:
for line in file:
preset_list.append(line.strip())
return preset_list
else:
return []
def generate_floats(batch_count, first_float, last_float):
if batch_count > 1:
interval = (last_float - first_float) / (batch_count - 1)
values = [str(round(first_float + i * interval, 3)) for i in range(batch_count)]
else:
values = [str(first_float)] if batch_count == 1 else []
return "; ".join(values)
def generate_ints(batch_count, first_int, last_int):
if batch_count > 1:
interval = (last_int - first_int) / (batch_count - 1)
values = [str(int(first_int + i * interval)) for i in range(batch_count)]
else:
values = [str(first_int)] if batch_count == 1 else []
# values = list(set(values)) # Remove duplicates
# values.sort() # Sort in ascending order
return "; ".join(values)
# Seed++ Batch
class XYplot_SeedsBatch:
@classmethod
def INPUT_TYPES(cls):
return {"required": {
"batch_count": ("INT", {"default": 3, "min": 1, "max": 50}), },
}
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, batch_count):
axis = "advanced: Seeds++ Batch"
xy_values = {"axis": axis, "values": batch_count}
return (xy_values,)
# Step Values
class XYplot_Steps:
parameters = ["steps", "start_at_step", "end_at_step",]
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"target_parameter": (cls.parameters,),
"batch_count": ("INT", {"default": 3, "min": 0, "max": 50}),
"first_step": ("INT", {"default": 10, "min": 1, "max": 10000}),
"last_step": ("INT", {"default": 20, "min": 1, "max": 10000}),
"first_start_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
"last_start_step": ("INT", {"default": 10, "min": 0, "max": 10000}),
"first_end_step": ("INT", {"default": 10, "min": 0, "max": 10000}),
"last_end_step": ("INT", {"default": 20, "min": 0, "max": 10000}),
}
}
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, target_parameter, batch_count, first_step, last_step, first_start_step, last_start_step,
first_end_step, last_end_step,):
axis, xy_first, xy_last = None, None, None
if target_parameter == "steps":
axis = "advanced: Steps"
xy_first = first_step
xy_last = last_step
elif target_parameter == "start_at_step":
axis = "advanced: StartStep"
xy_first = first_start_step
xy_last = last_start_step
elif target_parameter == "end_at_step":
axis = "advanced: EndStep"
xy_first = first_end_step
xy_last = last_end_step
values = generate_ints(batch_count, xy_first, xy_last)
return ({"axis": axis, "values": values},) if values is not None else (None,)
class XYplot_CFG:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"batch_count": ("INT", {"default": 3, "min": 0, "max": 50}),
"first_cfg": ("FLOAT", {"default": 7.0, "min": 0.0, "max": 100.0}),
"last_cfg": ("FLOAT", {"default": 9.0, "min": 0.0, "max": 100.0}),
}
}
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, batch_count, first_cfg, last_cfg):
axis = "advanced: CFG Scale"
values = generate_floats(batch_count, first_cfg, last_cfg)
return ({"axis": axis, "values": values},) if values else (None,)
class XYplot_FluxGuidance:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"batch_count": ("INT", {"default": 3, "min": 0, "max": 50}),
"first_guidance": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}),
"last_guidance": ("FLOAT", {"default": 3.5, "min": 0.0, "max": 100.0}),
}
}
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, batch_count, first_guidance, last_guidance):
axis = "advanced: Flux Guidance"
values = generate_floats(batch_count, first_guidance, last_guidance)
return ({"axis": axis, "values": values},) if values else (None,)
# Step Values
class XYplot_Sampler_Scheduler:
parameters = ["sampler", "scheduler", "sampler & scheduler"]
@classmethod
def INPUT_TYPES(cls):
samplers = ["None"] + comfy.samplers.KSampler.SAMPLERS
schedulers = ["None"] + comfy.samplers.KSampler.SCHEDULERS
inputs = {
"required": {
"target_parameter": (cls.parameters,),
"input_count": ("INT", {"default": 1, "min": 1, "max": 30, "step": 1})
}
}
for i in range(1, 30 + 1):
inputs["required"][f"sampler_{i}"] = (samplers,)
inputs["required"][f"scheduler_{i}"] = (schedulers,)
return inputs
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, target_parameter, input_count, **kwargs):
axis, values, = None, None,
if target_parameter == "scheduler":
axis = "advanced: Scheduler"
schedulers = [kwargs.get(f"scheduler_{i}") for i in range(1, input_count + 1)]
values = [scheduler for scheduler in schedulers if scheduler != "None"]
elif target_parameter == "sampler":
axis = "advanced: Sampler"
samplers = [kwargs.get(f"sampler_{i}") for i in range(1, input_count + 1)]
values = [sampler for sampler in samplers if sampler != "None"]
else:
axis = "advanced: Sampler&Scheduler"
samplers = [kwargs.get(f"sampler_{i}") for i in range(1, input_count + 1)]
schedulers = [kwargs.get(f"scheduler_{i}") for i in range(1, input_count + 1)]
values = []
for sampler, scheduler in zip(samplers, schedulers):
sampler = sampler if sampler else 'None'
scheduler = scheduler if scheduler else 'None'
values.append(sampler +','+ scheduler)
values = "; ".join(values)
return ({"axis": axis, "values": values},) if values else (None,)
class XYplot_Denoise:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"batch_count": ("INT", {"default": 3, "min": 0, "max": 50}),
"first_denoise": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.1}),
"last_denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.1}),
}
}
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, batch_count, first_denoise, last_denoise):
axis = "advanced: Denoise"
values = generate_floats(batch_count, first_denoise, last_denoise)
return ({"axis": axis, "values": values},) if values else (None,)
# PromptSR
class XYplot_PromptSR:
@classmethod
def INPUT_TYPES(cls):
inputs = {
"required": {
"target_prompt": (["positive", "negative"],),
"search_txt": ("STRING", {"default": "", "multiline": False}),
"replace_all_text": ("BOOLEAN", {"default": False}),
"replace_count": ("INT", {"default": 3, "min": 1, "max": 30 - 1}),
}
}
# Dynamically add replace_X inputs
for i in range(1, 30):
replace_key = f"replace_{i}"
inputs["required"][replace_key] = ("STRING", {"default": "", "multiline": False, "placeholder": replace_key})
return inputs
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, target_prompt, search_txt, replace_all_text, replace_count, **kwargs):
axis = None
if target_prompt == "positive":
axis = "advanced: Positive Prompt S/R"
elif target_prompt == "negative":
axis = "advanced: Negative Prompt S/R"
# Create base entry
values = [(search_txt, None, replace_all_text)]
if replace_count > 0:
# Append additional entries based on replace_count
values.extend([(search_txt, kwargs.get(f"replace_{i+1}"), replace_all_text) for i in range(replace_count)])
return ({"axis": axis, "values": values},) if values is not None else (None,)
# XYPlot Pos Condition
class XYplot_Positive_Cond:
@classmethod
def INPUT_TYPES(cls):
inputs = {
"optional": {
"positive_1": ("CONDITIONING",),
"positive_2": ("CONDITIONING",),
"positive_3": ("CONDITIONING",),
"positive_4": ("CONDITIONING",),
}
}
return inputs
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, positive_1=None, positive_2=None, positive_3=None, positive_4=None):
axis = "advanced: Pos Condition"
values = []
cond = []
# Create base entry
if positive_1 is not None:
values.append("0")
cond.append(positive_1)
if positive_2 is not None:
values.append("1")
cond.append(positive_2)
if positive_3 is not None:
values.append("2")
cond.append(positive_3)
if positive_4 is not None:
values.append("3")
cond.append(positive_4)
return ({"axis": axis, "values": values, "cond": cond},) if values is not None else (None,)
# XYPlot Neg Condition
class XYplot_Negative_Cond:
@classmethod
def INPUT_TYPES(cls):
inputs = {
"optional": {
"negative_1": ("CONDITIONING",),
"negative_2": ("CONDITIONING",),
"negative_3": ("CONDITIONING",),
"negative_4": ("CONDITIONING",),
}
}
return inputs
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, negative_1=None, negative_2=None, negative_3=None, negative_4=None):
axis = "advanced: Neg Condition"
values = []
cond = []
# Create base entry
if negative_1 is not None:
values.append(0)
cond.append(negative_1)
if negative_2 is not None:
values.append(1)
cond.append(negative_2)
if negative_3 is not None:
values.append(2)
cond.append(negative_3)
if negative_4 is not None:
values.append(3)
cond.append(negative_4)
return ({"axis": axis, "values": values, "cond": cond},) if values is not None else (None,)
# XYPlot Pos Condition List
class XYplot_Positive_Cond_List:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"positive": ("CONDITIONING",),
}
}
INPUT_IS_LIST = True
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, positive):
axis = "advanced: Pos Condition"
values = []
cond = []
for index, c in enumerate(positive):
values.append(str(index))
cond.append(c)
return ({"axis": axis, "values": values, "cond": cond},) if values is not None else (None,)
# XYPlot Neg Condition List
class XYplot_Negative_Cond_List:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"negative": ("CONDITIONING",),
}
}
INPUT_IS_LIST = True
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, negative):
axis = "advanced: Neg Condition"
values = []
cond = []
for index, c in enumerate(negative):
values.append(index)
cond.append(c)
return ({"axis": axis, "values": values, "cond": cond},) if values is not None else (None,)
# XY Plot: ControlNet
class XYplot_Control_Net:
parameters = ["strength", "start_percent", "end_percent"]
@classmethod
def INPUT_TYPES(cls):
def get_file_list(filenames):
return [file for file in filenames if file != "put_models_here.txt" and "lllite" not in file]
return {
"required": {
"control_net_name": (get_file_list(folder_paths.get_filename_list("controlnet")),),
"image": ("IMAGE",),
"target_parameter": (cls.parameters,),
"batch_count": ("INT", {"default": 3, "min": 1, "max": 30}),
"first_strength": ("FLOAT", {"default": 0.0, "min": 0.00, "max": 10.0, "step": 0.01}),
"last_strength": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 10.0, "step": 0.01}),
"first_start_percent": ("FLOAT", {"default": 0.0, "min": 0.00, "max": 1.0, "step": 0.01}),
"last_start_percent": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}),
"first_end_percent": ("FLOAT", {"default": 0.0, "min": 0.00, "max": 1.0, "step": 0.01}),
"last_end_percent": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}),
"strength": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 10.0, "step": 0.01}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.00, "max": 1.0, "step": 0.01}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.00, "max": 1.0, "step": 0.01}),
},
}
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, control_net_name, image, target_parameter, batch_count, first_strength, last_strength, first_start_percent,
last_start_percent, first_end_percent, last_end_percent, strength, start_percent, end_percent):
axis, = None,
values = []
if target_parameter == "strength":
axis = "advanced: ControlNetStrength"
values.append([(control_net_name, image, first_strength, start_percent, end_percent)])
strength_increment = (last_strength - first_strength) / (batch_count - 1) if batch_count > 1 else 0
for i in range(1, batch_count - 1):
values.append([(control_net_name, image, first_strength + i * strength_increment, start_percent,
end_percent)])
if batch_count > 1:
values.append([(control_net_name, image, last_strength, start_percent, end_percent)])
elif target_parameter == "start_percent":
axis = "advanced: ControlNetStart%"
percent_increment = (last_start_percent - first_start_percent) / (batch_count - 1) if batch_count > 1 else 0
values.append([(control_net_name, image, strength, first_start_percent, end_percent)])
for i in range(1, batch_count - 1):
values.append([(control_net_name, image, strength, first_start_percent + i * percent_increment,
end_percent)])
# Always add the last start_percent if batch_count is more than 1.
if batch_count > 1:
values.append((control_net_name, image, strength, last_start_percent, end_percent))
elif target_parameter == "end_percent":
axis = "advanced: ControlNetEnd%"
percent_increment = (last_end_percent - first_end_percent) / (batch_count - 1) if batch_count > 1 else 0
values.append([(control_net_name, image, image, strength, start_percent, first_end_percent)])
for i in range(1, batch_count - 1):
values.append([(control_net_name, image, strength, start_percent,
first_end_percent + i * percent_increment)])
if batch_count > 1:
values.append([(control_net_name, image, strength, start_percent, last_end_percent)])
return ({"axis": axis, "values": values},)
#Checkpoints
class XYplot_Checkpoint:
modes = ["Ckpt Names", "Ckpt Names+ClipSkip", "Ckpt Names+ClipSkip+VAE"]
@classmethod
def INPUT_TYPES(cls):
checkpoints = ["None"] + folder_paths.get_filename_list("checkpoints")
vaes = ["Baked VAE"] + folder_paths.get_filename_list("vae")
inputs = {
"required": {
"input_mode": (cls.modes,),
"ckpt_count": ("INT", {"default": 3, "min": 0, "max": 10, "step": 1}),
}
}
for i in range(1, 10 + 1):
inputs["required"][f"ckpt_name_{i}"] = (checkpoints,)
inputs["required"][f"clip_skip_{i}"] = ("INT", {"default": -1, "min": -24, "max": -1, "step": 1})
inputs["required"][f"vae_name_{i}"] = (vaes,)
inputs["optional"] = {
"optional_lora_stack": ("LORA_STACK",)
}
return inputs
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, input_mode, ckpt_count, **kwargs):
axis = "advanced: Checkpoint"
checkpoints = [kwargs.get(f"ckpt_name_{i}") for i in range(1, ckpt_count + 1)]
clip_skips = [kwargs.get(f"clip_skip_{i}") for i in range(1, ckpt_count + 1)]
vaes = [kwargs.get(f"vae_name_{i}") for i in range(1, ckpt_count + 1)]
# Set None for Clip Skip and/or VAE if not correct modes
for i in range(ckpt_count):
if "ClipSkip" not in input_mode:
clip_skips[i] = 'None'
if "VAE" not in input_mode:
vaes[i] = 'None'
# Extend each sub-array with lora_stack if it's not None
values = [checkpoint.replace(',', '*')+','+str(clip_skip)+','+vae.replace(',', '*') for checkpoint, clip_skip, vae in zip(checkpoints, clip_skips, vaes) if
checkpoint != "None"]
optional_lora_stack = kwargs.get("optional_lora_stack") if "optional_lora_stack" in kwargs else []
xy_values = {"axis": axis, "values": values, "lora_stack": optional_lora_stack}
return (xy_values,)
#Loras
class XYplot_Lora:
modes = ["Lora Names", "Lora Names+Weights"]
@classmethod
def INPUT_TYPES(cls):
loras = ["None"] + folder_paths.get_filename_list("loras")
inputs = {
"required": {
"input_mode": (cls.modes,),
"lora_count": ("INT", {"default": 3, "min": 0, "max": 10, "step": 1}),
"model_strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
"clip_strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
}
}
for i in range(1, 10 + 1):
inputs["required"][f"lora_name_{i}"] = (loras,)
inputs["required"][f"model_str_{i}"] = ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01})
inputs["required"][f"clip_str_{i}"] = ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01})
inputs["optional"] = {
"optional_lora_stack": ("LORA_STACK",),
"display_trigger_word": ("BOOLEAN", {"display_trigger_word": True, "tooltip": "Trigger words showing lora model pass through the model's metadata, but not necessarily accurately."}),
}
return inputs
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def sort_tags_by_frequency(self, meta_tags):
if meta_tags is None:
return []
if "ss_tag_frequency" in meta_tags:
meta_tags = meta_tags["ss_tag_frequency"]
meta_tags = json.loads(meta_tags)
sorted_tags = {}
for _, dataset in meta_tags.items():
for tag, count in dataset.items():
tag = str(tag).strip()
if tag in sorted_tags:
sorted_tags[tag] = sorted_tags[tag] + count
else:
sorted_tags[tag] = count
# sort tags by training frequency. Most seen tags firsts
sorted_tags = dict(sorted(sorted_tags.items(), key=lambda item: item[1], reverse=True))
return list(sorted_tags.keys())
else:
return []
def get_trigger_words(self, lora_name, display=False):
if not display:
return ""
file_path = folder_paths.get_full_path('loras', lora_name)
if not file_path:
return ''
header = getMetadata(file_path)
header_json = json.loads(header)
meta = header_json["__metadata__"] if "__metadata__" in header_json else None
tags = self.sort_tags_by_frequency(meta)
return ' '+ tags[0] if len(tags) > 0 else ''
def xy_value(self, input_mode, lora_count, model_strength, clip_strength, display_trigger_words=True, **kwargs):
axis = "advanced: Lora"
# Extract values from kwargs
loras = [kwargs.get(f"lora_name_{i}") for i in range(1, lora_count + 1)]
model_strs = [kwargs.get(f"model_str_{i}", model_strength) for i in range(1, lora_count + 1)]
clip_strs = [kwargs.get(f"clip_str_{i}", clip_strength) for i in range(1, lora_count + 1)]
# Use model_strength and clip_strength for the loras where values are not provided
if "Weights" not in input_mode:
for i in range(lora_count):
model_strs[i] = model_strength
clip_strs[i] = clip_strength
# Extend each sub-array with lora_stack if it's not None
values = [lora.replace(',', '*')+','+str(model_str)+','+str(clip_str) +',' + self.get_trigger_words(lora, display_trigger_words) for lora, model_str, clip_str
in zip(loras, model_strs, clip_strs) if lora != "None"]
optional_lora_stack = kwargs.get("optional_lora_stack") if "optional_lora_stack" in kwargs else []
xy_values = {"axis": axis, "values": values, "lora_stack": optional_lora_stack}
return (xy_values,)
# 模型叠加
class XYplot_ModelMergeBlocks:
@classmethod
def INPUT_TYPES(s):
checkpoints = folder_paths.get_filename_list("checkpoints")
vae = ["Use Model 1", "Use Model 2"] + folder_paths.get_filename_list("vae")
preset = ["Preset"] # 20
preset += load_preset("mmb-preset.txt")
preset += load_preset("mmb-preset.custom.txt")
default_vectors = "1,0,0; \n0,1,0; \n0,0,1; \n1,1,0; \n1,0,1; \n0,1,1; "
return {
"required": {
"ckpt_name_1": (checkpoints,),
"ckpt_name_2": (checkpoints,),
"vae_use": (vae, {"default": "Use Model 1"}),
"preset": (preset, {"default": "preset"}),
"values": ("STRING", {"default": default_vectors, "multiline": True, "placeholder": 'Support 2 methods:\n\n1.input, middle, out in same line and insert values seperated by "; "\n\n2.model merge block number seperated by ", " in same line and insert values seperated by "; "'}),
},
"hidden": {"my_unique_id": "UNIQUE_ID"}
}
RETURN_TYPES = ("X_Y",)
RETURN_NAMES = ("X or Y",)
FUNCTION = "xy_value"
CATEGORY = "EasyUse/XY Inputs"
def xy_value(self, ckpt_name_1, ckpt_name_2, vae_use, preset, values, my_unique_id=None):
axis = "advanced: ModelMergeBlocks"
if ckpt_name_1 is None:
raise Exception("ckpt_name_1 is not found")
if ckpt_name_2 is None:
raise Exception("ckpt_name_2 is not found")
models = (ckpt_name_1, ckpt_name_2)
xy_values = {"axis":axis, "values":values, "models":models, "vae_use": vae_use}
return (xy_values,)