|
import importlib.metadata |
|
import torch |
|
import logging |
|
import numpy as np |
|
import trimesh |
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') |
|
log = logging.getLogger(__name__) |
|
|
|
def check_diffusers_version(): |
|
try: |
|
version = importlib.metadata.version('diffusers') |
|
required_version = '0.31.0' |
|
if version < required_version: |
|
raise AssertionError(f"diffusers version {version} is installed, but version {required_version} or higher is required.") |
|
except importlib.metadata.PackageNotFoundError: |
|
raise AssertionError("diffusers is not installed.") |
|
|
|
def print_memory(device): |
|
memory = torch.cuda.memory_allocated(device) / 1024**3 |
|
max_memory = torch.cuda.max_memory_allocated(device) / 1024**3 |
|
max_reserved = torch.cuda.max_memory_reserved(device) / 1024**3 |
|
log.info(f"Allocated memory: {memory=:.3f} GB") |
|
log.info(f"Max allocated memory: {max_memory=:.3f} GB") |
|
log.info(f"Max reserved memory: {max_reserved=:.3f} GB") |
|
|
|
|
|
|
|
def rotate_mesh_matrix(mesh, angle, axis='z'): |
|
|
|
matrix = trimesh.transformations.rotation_matrix( |
|
angle=np.radians(angle), |
|
direction={ |
|
'x': [1, 0, 0], |
|
'y': [0, 1, 0], |
|
'z': [0, 0, 1] |
|
}[axis] |
|
) |
|
return mesh.apply_transform(matrix) |
|
|
|
def intrinsics_to_projection( |
|
intrinsics: torch.Tensor, |
|
near: float, |
|
far: float, |
|
) -> torch.Tensor: |
|
""" |
|
OpenCV intrinsics to OpenGL perspective matrix |
|
|
|
Args: |
|
intrinsics (torch.Tensor): [3, 3] OpenCV intrinsics matrix |
|
near (float): near plane to clip |
|
far (float): far plane to clip |
|
Returns: |
|
(torch.Tensor): [4, 4] OpenGL perspective matrix |
|
""" |
|
fx, fy = intrinsics[0, 0], intrinsics[1, 1] |
|
cx, cy = intrinsics[0, 2], intrinsics[1, 2] |
|
ret = torch.zeros((4, 4), dtype=intrinsics.dtype, device=intrinsics.device) |
|
ret[0, 0] = 2 * fx |
|
ret[1, 1] = 2 * fy |
|
ret[0, 2] = 2 * cx - 1 |
|
ret[1, 2] = - 2 * cy + 1 |
|
ret[2, 2] = far / (far - near) |
|
ret[2, 3] = near * far / (near - far) |
|
ret[3, 2] = 1. |
|
return ret |
|
|
|
def yaw_pitch_r_fov_to_extrinsics_intrinsics(yaws, pitchs, rs, fovs): |
|
import utils3d |
|
is_list = isinstance(yaws, list) |
|
if not is_list: |
|
yaws = [yaws] |
|
pitchs = [pitchs] |
|
if not isinstance(rs, list): |
|
rs = [rs] * len(yaws) |
|
if not isinstance(fovs, list): |
|
fovs = [fovs] * len(yaws) |
|
extrinsics = [] |
|
intrinsics = [] |
|
for yaw, pitch, r, fov in zip(yaws, pitchs, rs, fovs): |
|
fov = torch.deg2rad(torch.tensor(float(fov))).cuda() |
|
yaw = torch.tensor(float(yaw)).cuda() |
|
pitch = torch.tensor(float(pitch)).cuda() |
|
orig = torch.tensor([ |
|
torch.sin(yaw) * torch.cos(pitch), |
|
torch.cos(yaw) * torch.cos(pitch), |
|
torch.sin(pitch), |
|
]).cuda() * r |
|
extr = utils3d.torch.extrinsics_look_at(orig, torch.tensor([0, 0, 0]).float().cuda(), torch.tensor([0, 0, 1]).float().cuda()) |
|
intr = utils3d.torch.intrinsics_from_fov_xy(fov, fov) |
|
extrinsics.append(extr) |
|
intrinsics.append(intr) |
|
if not is_list: |
|
extrinsics = extrinsics[0] |
|
intrinsics = intrinsics[0] |
|
return extrinsics, intrinsics |
|
|