|
|
|
import math |
|
|
|
from einops import rearrange |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from comfy.ldm.modules.attention import optimized_attention |
|
import comfy.model_patcher |
|
import comfy.samplers |
|
|
|
|
|
DEFAULT_PAG_LTX = { 'layers': set([14]) } |
|
|
|
|
|
def gaussian_blur_2d(img, kernel_size, sigma): |
|
height = img.shape[-1] |
|
kernel_size = min(kernel_size, height - (height % 2 - 1)) |
|
ksize_half = (kernel_size - 1) * 0.5 |
|
|
|
x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size) |
|
|
|
pdf = torch.exp(-0.5 * (x / sigma).pow(2)) |
|
|
|
x_kernel = pdf / pdf.sum() |
|
x_kernel = x_kernel.to(device=img.device, dtype=img.dtype) |
|
|
|
kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :]) |
|
kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1]) |
|
|
|
padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2] |
|
|
|
img = F.pad(img, padding, mode="reflect") |
|
img = F.conv2d(img, kernel2d, groups=img.shape[-3]) |
|
|
|
return img |
|
|
|
|
|
|
|
class LTXPerturbedAttentionNode: |
|
@classmethod |
|
def INPUT_TYPES(s): |
|
return { |
|
"required": { |
|
"model": ("MODEL",), |
|
"scale": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 100.0, "step": 0.01, "round": 0.01}), |
|
"rescale": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 100.0, "step": 0.01, "round": 0.01}), |
|
"cfg": ("FLOAT", {"default": 3.0, "min": 0.0, "max": 100.0, "step": 0.01, "round": 0.01}), |
|
}, |
|
"optional": { |
|
"attn_override": ("ATTN_OVERRIDE",), |
|
|
|
} |
|
} |
|
|
|
RETURN_TYPES = ("MODEL",) |
|
FUNCTION = "patch" |
|
|
|
CATEGORY = "ltxtricks/attn" |
|
|
|
def patch(self, model, scale, rescale, cfg, attn_override=DEFAULT_PAG_LTX, attn_type="PAG"): |
|
m = model.clone() |
|
|
|
def pag_fn(q, k,v, heads, attn_precision=None, transformer_options=None): |
|
return v |
|
|
|
def seg_fn(q, k, v, heads, attn_precision=None, transformer_options=None): |
|
_, sequence_length, _ = q.shape |
|
b, c, f, h, w = transformer_options['original_shape'] |
|
|
|
q = rearrange(q, 'b (f h w) d -> b (f d) w h', h=h, w=w) |
|
kernel_size = math.ceil(6 * scale) + 1 - math.ceil(6 * scale) % 2 |
|
q = gaussian_blur_2d(q, kernel_size, scale) |
|
q = rearrange(q, 'b (f d) w h -> b (f h w) d', f=f) |
|
return optimized_attention(q, k, v, heads, attn_precision=attn_precision) |
|
|
|
def post_cfg_function(args): |
|
model = args["model"] |
|
|
|
cond_pred = args["cond_denoised"] |
|
uncond_pred = args["uncond_denoised"] |
|
|
|
len_conds = 1 if args.get('uncond', None) is None else 2 |
|
|
|
cond = args["cond"] |
|
sigma = args["sigma"] |
|
model_options = args["model_options"].copy() |
|
x = args["input"] |
|
|
|
if scale == 0: |
|
if len_conds == 1: |
|
return cond_pred |
|
return uncond_pred + (cond_pred - uncond_pred) |
|
|
|
attn_fn = pag_fn if attn_type == 'PAG' else seg_fn |
|
for block_idx in attn_override['layers']: |
|
model_options = comfy.model_patcher.set_model_options_patch_replace(model_options, attn_fn, f"layer", "self_attn", int(block_idx)) |
|
|
|
(perturbed,) = comfy.samplers.calc_cond_batch(model, [cond], x, sigma, model_options) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output = uncond_pred + cfg * (cond_pred - uncond_pred) \ |
|
+ scale * (cond_pred - perturbed) |
|
if rescale > 0: |
|
factor = cond_pred.std() / output.std() |
|
factor = rescale * factor + (1 - rescale) |
|
output = output * factor |
|
|
|
return output |
|
|
|
|
|
m.set_model_sampler_post_cfg_function(post_cfg_function) |
|
|
|
return (m,) |
|
|