jaxmetaverse's picture
Upload folder using huggingface_hub
82ea528 verified
import os
import math
import torch
import random
import torchaudio
import folder_paths
import numpy as np
import platform
import subprocess
import sys
import importlib.util
import importlib.machinery
import argparse
from omegaconf import OmegaConf
from PIL import Image
import shutil
import decimal
from decimal import Decimal, ROUND_UP
def import_inference_script(script_path):
"""Import a Python file as a module using its file path."""
if not os.path.exists(script_path):
raise ImportError(f"Script not found: {script_path}")
module_name = "latentsync_inference"
spec = importlib.util.spec_from_file_location(module_name, script_path)
if spec is None:
raise ImportError(f"Failed to create module spec for {script_path}")
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
try:
spec.loader.exec_module(module)
except Exception as e:
del sys.modules[module_name]
raise ImportError(f"Failed to execute module: {str(e)}")
return module
def check_ffmpeg():
try:
if platform.system() == "Windows":
# Check if ffmpeg exists in PATH
ffmpeg_path = shutil.which("ffmpeg.exe")
if ffmpeg_path is None:
# Look for ffmpeg in common locations
possible_paths = [
os.path.join(os.environ.get("ProgramFiles", "C:\\Program Files"), "ffmpeg", "bin"),
os.path.join(os.environ.get("ProgramFiles(x86)", "C:\\Program Files (x86)"), "ffmpeg", "bin"),
os.path.join(os.path.dirname(os.path.abspath(__file__)), "ffmpeg", "bin"),
]
for path in possible_paths:
if os.path.exists(os.path.join(path, "ffmpeg.exe")):
# Add to PATH
os.environ["PATH"] = path + os.pathsep + os.environ.get("PATH", "")
return True
print("FFmpeg not found. Please install FFmpeg and add it to PATH")
return False
return True
else:
subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
return True
except (subprocess.CalledProcessError, FileNotFoundError):
print("FFmpeg not found. Please install FFmpeg")
return False
def check_and_install_dependencies():
if not check_ffmpeg():
raise RuntimeError("FFmpeg is required but not found")
required_packages = [
'omegaconf',
'pytorch_lightning',
'transformers',
'accelerate',
'huggingface_hub',
'einops',
'diffusers'
]
def is_package_installed(package_name):
return importlib.util.find_spec(package_name) is not None
def install_package(package):
python_exe = sys.executable
try:
subprocess.check_call([python_exe, '-m', 'pip', 'install', package],
stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
print(f"Successfully installed {package}")
except subprocess.CalledProcessError as e:
print(f"Error installing {package}: {str(e)}")
raise RuntimeError(f"Failed to install required package: {package}")
for package in required_packages:
if not is_package_installed(package):
print(f"Installing required package: {package}")
try:
install_package(package)
except Exception as e:
print(f"Warning: Failed to install {package}: {str(e)}")
raise
def normalize_path(path):
"""Normalize path to handle spaces and special characters"""
return os.path.normpath(path).replace('\\', '/')
def get_ext_dir(subpath=None, mkdir=False):
dir = os.path.dirname(__file__)
if subpath is not None:
dir = os.path.join(dir, subpath)
dir = os.path.abspath(dir)
if mkdir and not os.path.exists(dir):
os.makedirs(dir)
return dir
def save_and_reload_frames(frames, temp_dir):
final_frames = []
for frame in frames:
# Convert to proper range (0-1)
frame = frame.float() / max(frame.max(), 1.0)
# Ensure CHW format
if frame.shape[0] != 3:
frame = frame.permute(2, 0, 1)
final_frames.append(frame)
stacked = torch.stack(final_frames)
print(f"Stacked min/max: {stacked.min()}, {stacked.max()}")
return stacked.to(device='cpu', dtype=torch.float32)
def setup_models():
cur_dir = get_ext_dir()
ckpt_dir = os.path.join(cur_dir, "checkpoints")
whisper_dir = os.path.join(ckpt_dir, "whisper")
# Create directories if they don't exist
os.makedirs(ckpt_dir, exist_ok=True)
os.makedirs(whisper_dir, exist_ok=True)
unet_path = os.path.join(ckpt_dir, "latentsync_unet.pt")
whisper_path = os.path.join(whisper_dir, "tiny.pt")
if not (os.path.exists(unet_path) and os.path.exists(whisper_path)):
print("Downloading required model checkpoints... This may take a while.")
try:
from huggingface_hub import snapshot_download
snapshot_download(repo_id="chunyu-li/LatentSync",
allow_patterns=["latentsync_unet.pt", "whisper/tiny.pt"],
local_dir=ckpt_dir, local_dir_use_symlinks=False)
print("Model checkpoints downloaded successfully!")
except Exception as e:
print(f"Error downloading models: {str(e)}")
print("\nPlease download models manually:")
print("1. Visit: https://huggingface.co/chunyu-li/LatentSync")
print("2. Download: latentsync_unet.pt and whisper/tiny.pt")
print(f"3. Place them in: {ckpt_dir}")
print(f" with whisper/tiny.pt in: {whisper_dir}")
raise RuntimeError("Model download failed. See instructions above.")
class LatentSyncNode:
def __init__(self):
check_and_install_dependencies()
setup_models()
@classmethod
def INPUT_TYPES(s):
return {"required": {
"images": ("IMAGE",),
"audio": ("AUDIO", ),
"seed": ("INT", {"default": 1247}),
},}
CATEGORY = "LatentSyncNode"
RETURN_TYPES = ("IMAGE", )
RETURN_NAMES = ("images", )
FUNCTION = "inference"
def inference(self, images, audio, seed):
cur_dir = get_ext_dir()
ckpt_dir = os.path.join(cur_dir, "checkpoints")
output_dir = folder_paths.get_output_directory()
temp_dir = os.path.join(output_dir, "temp_frames")
os.makedirs(output_dir, exist_ok=True)
os.makedirs(temp_dir, exist_ok=True)
# Create a temporary video file from the input frames
output_name = ''.join(random.choice("abcdefghijklmnopqrstuvwxyz") for _ in range(5))
temp_video_path = os.path.join(output_dir, f"temp_{output_name}.mp4")
output_video_path = os.path.join(output_dir, f"latentsync_{output_name}_out.mp4")
# Save frames as temporary video
import torchvision.io as io
if isinstance(images, list):
frames = torch.stack(images)
else:
frames = images
print(f"Initial frame count: {frames.shape[0]}")
frames = (frames * 255).byte()
if len(frames.shape) == 3:
frames = frames.unsqueeze(0)
print(f"Frame count before writing video: {frames.shape[0]}")
if isinstance(frames, torch.Tensor):
frames = frames.cpu()
try:
io.write_video(temp_video_path, frames, fps=25, video_codec='h264')
except TypeError:
# Fallback for newer versions
import av
container = av.open(temp_video_path, mode='w')
stream = container.add_stream('h264', rate=25)
stream.width = frames.shape[2]
stream.height = frames.shape[1]
for frame in frames:
frame = av.VideoFrame.from_ndarray(frame.numpy(), format='rgb24')
packet = stream.encode(frame)
container.mux(packet)
# Flush stream
packet = stream.encode(None)
container.mux(packet)
container.close()
video_path = normalize_path(temp_video_path)
if not os.path.exists(ckpt_dir):
print("Downloading model checkpoints... This may take a while.")
from huggingface_hub import snapshot_download
snapshot_download(repo_id="chunyu-li/LatentSync",
allow_patterns=["latentsync_unet.pt", "whisper/tiny.pt"],
local_dir=ckpt_dir, local_dir_use_symlinks=False)
print("Model checkpoints downloaded successfully!")
inference_script_path = os.path.join(cur_dir, "scripts", "inference.py")
unet_config_path = normalize_path(os.path.join(cur_dir, "configs", "unet", "second_stage.yaml"))
scheduler_config_path = normalize_path(os.path.join(cur_dir, "configs"))
ckpt_path = normalize_path(os.path.join(ckpt_dir, "latentsync_unet.pt"))
whisper_ckpt_path = normalize_path(os.path.join(ckpt_dir, "whisper", "tiny.pt"))
# resample audio to 16k hz and save to wav
waveform = audio["waveform"]
sample_rate = audio["sample_rate"]
if waveform.dim() == 3: # Expected shape: [channels, samples]
waveform = waveform.squeeze(0)
if sample_rate != 16000:
new_sample_rate = 16000
waveform_16k = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=new_sample_rate)(waveform)
waveform, sample_rate = waveform_16k, new_sample_rate
audio_path = normalize_path(os.path.join(output_dir, f"latentsync_{output_name}_audio.wav"))
torchaudio.save(audio_path, waveform, sample_rate)
print(f"Using video path: {video_path}")
print(f"Video file exists: {os.path.exists(video_path)}")
print(f"Video file size: {os.path.getsize(video_path)} bytes")
assert os.path.exists(video_path), f"video_path not exists: {video_path}"
assert os.path.exists(audio_path), f"audio_path not exists: {audio_path}"
try:
# Add the package root to Python path
package_root = os.path.dirname(cur_dir)
if package_root not in sys.path:
sys.path.insert(0, package_root)
# Add the current directory to Python path
if cur_dir not in sys.path:
sys.path.insert(0, cur_dir)
# Import the inference module
inference_module = import_inference_script(inference_script_path)
# Create a Namespace object with the arguments
args = argparse.Namespace(
unet_config_path=unet_config_path,
inference_ckpt_path=ckpt_path,
video_path=video_path,
audio_path=audio_path,
video_out_path=output_video_path,
seed=seed,
scheduler_config_path=scheduler_config_path,
whisper_ckpt_path=whisper_ckpt_path
)
# Load the config
config = OmegaConf.load(unet_config_path)
# Call main with both config and args
inference_module.main(config, args)
# Load the processed video back as frames
processed_frames = io.read_video(output_video_path, pts_unit='sec')[0] # [T, H, W, C]
print(f"Frame count after reading video: {processed_frames.shape[0]}")
# Process frames following wav2lip.py pattern
out_tensor_list = []
for frame in processed_frames:
# Convert to numpy and ensure correct format
frame = frame.numpy()
# Convert frame to float32 and normalize
frame = frame.astype(np.float32) / 255.0
# Convert back to tensor
frame = torch.from_numpy(frame)
# Ensure we have 3 channels
if len(frame.shape) == 2: # If grayscale
frame = frame.unsqueeze(2).repeat(1, 1, 3)
elif frame.shape[2] == 4: # If RGBA
frame = frame[:, :, :3]
# Change to [C, H, W] format
frame = frame.permute(2, 0, 1)
out_tensor_list.append(frame)
processed_frames = io.read_video(output_video_path, pts_unit='sec')[0] # [T, H, W, C]
processed_frames = processed_frames.float() / 255.0
print(f"Frame count after normalization: {processed_frames.shape[0]}")
# Fix dimensions for VideoCombine compatibility
if len(processed_frames.shape) == 3:
processed_frames = processed_frames.unsqueeze(0)
if processed_frames.shape[0] == 1 and len(processed_frames.shape) == 4:
processed_frames = processed_frames.squeeze(0)
if processed_frames.shape[0] == 3: # If in CHW format
processed_frames = processed_frames.permute(1, 2, 0) # Convert to HWC
if processed_frames.shape[-1] == 4: # If RGBA
processed_frames = processed_frames[..., :3]
print(f"Final frame count: {processed_frames.shape[0]}")
print(f"Final shape: {processed_frames.shape}")
# Clean up
if os.path.exists(temp_video_path):
os.remove(temp_video_path)
if os.path.exists(output_video_path):
os.remove(output_video_path)
shutil.rmtree(temp_dir, ignore_errors=True)
except Exception as e:
# Clean up on error
if os.path.exists(temp_video_path):
os.remove(temp_video_path)
if os.path.exists(output_video_path):
os.remove(output_video_path)
shutil.rmtree(temp_dir, ignore_errors=True)
print(f"Error during inference: {str(e)}")
import traceback
traceback.print_exc()
raise
return (processed_frames,)
class VideoLengthAdjuster:
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"images": ("IMAGE",),
"audio": ("AUDIO",),
"mode": (["normal", "pingpong", "loop_to_audio"], {"default": "normal"}),
"fps": ("FLOAT", {"default": 25.0, "min": 1.0, "max": 120.0}),
"pingpong_smoothing": ("INT", {"default": 2, "min": 0, "max": 10}),
}
}
CATEGORY = "LatentSyncNode"
RETURN_TYPES = ("IMAGE", "AUDIO")
RETURN_NAMES = ("images", "audio")
FUNCTION = "adjust"
def adjust(self, images, audio, mode, fps=25.0, pingpong_smoothing=2):
# --- High-Precision Initialization ---
ctx = decimal.getcontext()
ctx.rounding = ROUND_UP
# --- Audio Validation ---
waveform = audio["waveform"].squeeze(0)
if waveform.numel() < 10:
raise ValueError("Audio input too short for processing")
sample_rate = Decimal(str(audio["sample_rate"]))
fps_dec = Decimal(str(fps)).quantize(Decimal('1.000'))
# --- Frame Preparation ---
original_frames = [images[i] for i in range(images.shape[0])]
original_count = len(original_frames)
# --- Ping-Pong Processing ---
if mode == "pingpong":
reversed_frames = original_frames[::-1]
for i in range(int(pingpong_smoothing)): # Convert to int
alpha = (i + 1) / (pingpong_smoothing + 1)
original_frames[-1 - i] = original_frames[-1 - i] * (1 - float(alpha)) + reversed_frames[i] * float(alpha)
frames = original_frames + reversed_frames[int(pingpong_smoothing):] # Convert to int
else:
frames = original_frames.copy()
# --- Integer Conversion for Indexing ---
audio_duration = Decimal(waveform.shape[1]) / sample_rate
exact_frames_needed = int((audio_duration * fps_dec).to_integral_value()) # Convert to int
final_video_duration = exact_frames_needed / float(fps_dec) # Use float for duration
required_samples = int((final_video_duration * float(sample_rate))) # Convert to int
# --- Frame Adjustment ---
current_frames = len(frames)
if current_frames < exact_frames_needed:
repeat_times = math.ceil(exact_frames_needed / current_frames)
frames = (frames * repeat_times)[:exact_frames_needed] # Now using integers
elif current_frames > exact_frames_needed:
frames = frames[:exact_frames_needed]
# --- Audio Trimming ---
adjusted_audio = waveform[:, :required_samples]
return (
torch.stack(frames),
{"waveform": adjusted_audio.unsqueeze(0), "sample_rate": int(sample_rate)}
)
NODE_CLASS_MAPPINGS = {
"D_LatentSyncNode": LatentSyncNode,
"D_VideoLengthAdjuster": VideoLengthAdjuster,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"D_LatentSyncNode": "LatentSync Node",
"D_VideoLengthAdjuster": "Video Length Adjuster",
}