msoft_detr_finetuned_cppe5_4

This model is a fine-tuned version of microsoft/conditional-detr-resnet-50 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2977
  • Map: 0.021
  • Map 50: 0.0499
  • Map 75: 0.0154
  • Map Small: 0.0068
  • Map Medium: 0.0134
  • Map Large: 0.0527
  • Mar 1: 0.0707
  • Mar 10: 0.1568
  • Mar 100: 0.2057
  • Mar Small: 0.0544
  • Mar Medium: 0.1672
  • Mar Large: 0.2741
  • Map Coverall: 0.06
  • Mar 100 Coverall: 0.5324
  • Map Face Shield: 0.0055
  • Mar 100 Face Shield: 0.0688
  • Map Gloves: 0.0015
  • Mar 100 Gloves: 0.0946
  • Map Goggles: 0.0083
  • Mar 100 Goggles: 0.0639
  • Map Mask: 0.03
  • Mar 100 Mask: 0.2691

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Coverall Mar 100 Coverall Map Face Shield Mar 100 Face Shield Map Gloves Mar 100 Gloves Map Goggles Mar 100 Goggles Map Mask Mar 100 Mask
No log 1.0 32 3.7102 0.0005 0.0021 0.0003 0.0001 0.0004 0.0013 0.0026 0.0261 0.0464 0.0019 0.0354 0.0536 0.0016 0.1713 0.0 0.0 0.0001 0.0123 0.0 0.0111 0.0008 0.0375
No log 2.0 64 2.7691 0.0051 0.0161 0.0015 0.0023 0.0065 0.0113 0.0115 0.0494 0.0884 0.0324 0.0666 0.1259 0.0052 0.2228 0.0 0.0 0.0001 0.0438 0.0007 0.0194 0.0194 0.1559
No log 3.0 96 2.5735 0.0178 0.0407 0.0149 0.0033 0.0102 0.0334 0.0415 0.1076 0.1578 0.0249 0.1105 0.2077 0.0637 0.539 0.0 0.0 0.0002 0.0446 0.0028 0.0222 0.0222 0.1831
No log 4.0 128 2.5173 0.0246 0.0528 0.0225 0.0048 0.0136 0.0308 0.0557 0.1141 0.1519 0.027 0.1288 0.2036 0.0974 0.5074 0.0 0.0 0.0004 0.0692 0.0 0.0 0.0254 0.1831
No log 5.0 160 2.3440 0.0167 0.0413 0.0111 0.0066 0.0106 0.0438 0.0517 0.1312 0.183 0.0472 0.1398 0.2513 0.0437 0.5022 0.0029 0.0312 0.0009 0.0877 0.0074 0.0528 0.0287 0.2412
No log 6.0 192 2.3166 0.0203 0.0471 0.0156 0.0064 0.0131 0.05 0.0655 0.1514 0.2036 0.0635 0.1626 0.2709 0.059 0.5346 0.0039 0.0521 0.0014 0.1015 0.0085 0.0722 0.0286 0.2574
No log 7.0 224 2.2977 0.021 0.0499 0.0154 0.0068 0.0134 0.0527 0.0707 0.1568 0.2057 0.0544 0.1672 0.2741 0.06 0.5324 0.0055 0.0688 0.0015 0.0946 0.0083 0.0639 0.03 0.2691

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.5.0+cu124
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
43.5M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for jaxnwagner/msoft_detr_finetuned_cppe5_4

Finetuned
(49)
this model