jaypratap's picture
Model save
7e023dd verified
metadata
license: apache-2.0
base_model: facebook/vit-mae-base
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-mae-base-effusion-classifier
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8173673328738801

vit-mae-base-effusion-classifier

This model is a fine-tuned version of facebook/vit-mae-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4179
  • Accuracy: 0.8174

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6554 1.0 362 0.6692 0.6030
0.569 2.0 725 0.5891 0.7023
0.6098 3.0 1088 0.5421 0.7367
0.4984 4.0 1451 0.5668 0.7043
0.4884 5.0 1813 0.6061 0.6844
0.4351 6.0 2176 0.4481 0.8098
0.4794 7.0 2539 0.4384 0.8084
0.4636 8.0 2902 0.4343 0.8077
0.4816 9.0 3264 0.5363 0.7491
0.5016 10.0 3627 0.4993 0.7677
0.4826 11.0 3990 0.4483 0.8043
0.4707 12.0 4353 0.4249 0.8112
0.4483 13.0 4715 0.4193 0.8160
0.419 14.0 5078 0.4146 0.8215
0.5039 15.0 5441 0.4188 0.8181
0.4111 16.0 5804 0.4459 0.8112
0.3293 17.0 6166 0.4228 0.8181
0.4171 18.0 6529 0.4239 0.8215
0.3375 19.0 6892 0.4162 0.8215
0.32 19.96 7240 0.4179 0.8174

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2